
m

O
Q

<

CO

©

AD

TECHNICAL REPORT NO. 5

BRLESC S/ll FORTRAN

by

Lloyd W. Campbell
Glenn A. Beck

March 1970

M I

D D C

B

This document has been approved for public release and salt-
its distribution is unlimited.

;■ : I by tl
CLEARINGHOUSE

■.■■-..■.•

In1:»: n M i^rtnq!,*"'! >\i -...' M

U.S. ARMY MATERIEL COMMAND
ABERDEEN RESEARCH AND DEVELOPMENT CENTER
ABERDEEN PROVING GROUND, MARYLAND

i t°

BLANK PAGES
IN THIS
DOCUMENT
WERE NOT
FILMED

.

ABERDEEN RESEARCH AND DEVELOPMENT CENTER

TECHNICAL REPORT NO. 5

MARCH 1970

BRLESC I/II FORTRAN

Lloyd W. Campbell
Glenn A. Beck

Computer Support Division

This document has been approved for public release and sale;
its distribution is unlimited.

Funded by all ARDC RDT&E Projects

ABERDEEN PROVING GROUND, MARYLAND

- Pg£,*lH!,*!*=- - .-_-.■*.

ABERDEEN RESEARCH AND DEVELOPMENT CENTER

TECHNICAL REPORT NO. 5

LWCampbe11/GEeck/e ff
Aberdeen Proving Ground, Md,
March 1970

BRLESC I/II FORTRAN

ABSTRACT

FORTRAN is a popular scientific programming language that has been

implemented on many computers. This report describes the FORTRAN

language in general and includes specific details about its implementa-

tion on the BRLESC I and BRLESC II computers at the Aberdeen Research

and Development Center.

TABLE OF CONTENTS

Page

ABSTRACT 3

I. INrRODUCTION 11

II. THE CHARACTER SET . 13

III. SYMBOLIC NAMES AND CONSTANTS 13

General Names 13

Statement Numbers ... 13

Constants 14

Arrays 15

IV. ARITHMETIC EXPRESSIONS 16

V. ARITHMETIC ASSIGNMENT STATEMENTS , 18

VI. LOGICAL EXPRESSIONS 19

Logical Assignment Statement3 . 20

Logical Masking Statements 21

VII. SPECIFICATION STATEMENTS 22

DIMENSION 22

COMMON 22

EQUIVALENCE 25

TYPE-STATEMENTS 26

EXTERNAL 27

VIII. CONTROL STATEMENTS 29

GOTO 29

GOTO (Computed) 29

ASSIGN 29

GOTO (Assigned) 30

IF (Arithmetic) 30

IF (Logical) 30

IF (Two Branch) 31

^ 5

TABLE OF CONTENTS (Continued)

Page

DO 31

CONTINUE 33

STOP 33

PAUSE . 34

CALL 34

IF (SENSE SWITCH) and CALL SWITCH 35

SENSE LIGHT and CALL SLTTE 36

IF (SENSE LIGHT) and CALL SLITET 36

IF ACCUMULATOR and CALL OVERFL 37

IF QUOTIENT OVERFLOW 37

IF DIVIDE CHECK and CALL DVCHK 37

IX. FORMAT STATEMENT 38

I and E Fields 41

F Fields 42

H and ' Fields 43

*, $, A and X Fields 44

L, D, G, 0 and R Fields 45

Z Fields 46

X. INPUT/OUTPUT LISTS 47

XI. INPUT/OUTPUT STATEMENTS 49

READ(t,f) and READ INPUT TAPE . , 50

WRITE(t,f) and WRITE OUTPUT TAPE 51

READ(t) and READ TAPE 51

WRITE(t) and WRITE TAPE 52

END FILE 52

BACKSPACE 52

REWIND 53

READ , . . 53

PUNCH 53

TABLE OF CONTENTS (Continued)

Page

PRINT 53

ADDITIONAL NOTES ON INPUT/OUTPUT STATEMENTS ... 54

t ADDITIONAL NOTES ON THE USAGE OF MAGNETIC TAPE

ON BRLESC I/II 55

Tape Unit Table 56

Vertical Space Control 57

XII. DECODE AND ENCODE STATEMENTS 58

DECODE 58

ENCODE 59

XIII. DATA STATEMENT 60

XIV. SUBPROGRAM STATEMENTS 62

SUBROUTINE , 62

Dummy Arguments and Adjustable Dimensions . 63

FUNCTION 65

RETURN 66

END . 66

ENTRY 67

BLOCK DATA 68

XV. PREDEFINED FUNCTIONS AND STATEMENT FUNCTIONS 69

Functions 69

Predefined Functions 69

Naming Functions 70

Use of Functions . 70
■

t Statement Functions 71

XVI. PREDEFINED SUBROUTINES . 72

XVII« FORTRAN PROGRAM CARDS 76

F Cards 78

B Cards 78

TABLE 07 CONTENTS (Continued)

Page

D Cards 79

Statement Arrangement 79

XVIII. BRLESC I/II CONTROL CART« AND DICTIONARY PRINTING . . 80

XIX. BRLESC I/II ASSEMBLY ORDERS 89

BRLESC I Assembly Language 89

BRLESC II Assembly Language 93

XX. MAXIMUM TIME AND OUTPUT SPECIFICATIONS 100

Maximum Time 100

Maximum Output 101

XXI. STATEMENT 98765 and 98766 102

XXII. CHAIN JOBS 103

XXIII. COMPILING FROM TAPE 12 104

XXIV. A PROGRAM TO WRITE PROGRAMS ON TAPE 12 106

XXV. BRLESC I/II COMPILER ERROR PRINTS 108

XXVI. BRLESC I/II RUN ERROR PRINTS 116

XXVII. OPERATION OF BRLESC I/II COMPILERS 119

XXVIII. SPEED OF BRLESC I/II FORTRAN COMPILING 120

XXIX. CHECKLIST FOR CONVERTING OTHER COMPUTER FORTRAN
PROGRAMS TO BRLESC I/II FORTRAN 121

XXX. SUMMARY OF BRLESC I/II FORTRAN STATEMENTS 125

REFERENCES 131

APPENDICES

A. LIST OF PREDEFINED FUNCTIONS FOR
BRLESC I/II 133

B. THREE EXAMFLES OF FORTRAN PROGRAMS 136

1

TABLE OF CONTENTS (Continued)

Page

C. SYMBOLIC AND SEXADECIMAL BRLESC I
ORDER TYPES 140

D. SYMBOLIC AND SEXADECIMAL BRLESC II
ORDER TYPES 144

E. ARDC PRINTER CHARACTERS 147

F. LISTING OF FORTRAN SUBPROGRAM
CARD DECKS AVAILABLE FROM
SYSTEMS PROGRAMMING 149

DISTRIBUTION LIST 163

■ ■

I. INTRODUCTION

FORTRAN is a programming language that is widely used on a variety

of computers and can be used on the Aberdeen Research and Development

Center's (ARDC) 3RLESC I and BRLESC II computers. FORTRAN was designed

primarily for programming of scientific problems and the evaluation of

arithmetic formulas.

This r^nual is intended primarily as a reference manual for pro-

grammers that are already familiar with FORTRAN and the BRLESC I/II

computers; however, it includes a general description of the FORTRAN

language and should prove helpful to anyone who is interested in writ-

ing or reading FORTRAN programs. Additional details and general

information can be obtained from other FORTRAN manuals and publications.

Tills manual emphasizes the: details, restrictions and special

features of the la^oage as implemented on BRLESC I and BRLESC II.

FORTRAN is not exactly the same on all computers, and it is not exactly

tna same on BRLESC I and BRLESC II. Although the general rules are

usually the same, differences in details do exist and some of these

differences are quite subtle. It is relatively easy to write FORTRAN

programs which when executed on different computers will yield different

results. These differences may be due to differences in compilers or

differences in the structures of the computers. However, most FORTRAN

programs require relatively minor modifications to allow them to run

on any given computer. The modifications usually require much less

effort and time than would be required to reprogram the problem in

another programming language.

There have been two prominent versions of the FORTRAN language.

They are referred to as FORTRAN II and FORTRAN IV. FORTRAN IV does not

include everything that was in FORTRAN II. However, the BRLESC I/II

compilers have retained essentially all of FORTRAN II so that it will

usually accept statements that are defined in either of these two ver-

sions of the FORTRAN language. A third "version" occurred in March

1966 when the American Standards Association (now called American Stand-

ards National Institute) published the document X?.9-1966 which describes

PRECEDING PAGE BUR
11

: ■ ■ ; ■ ■■..::..

I

the "standard" FORTRAN language. This standard language is essentially

the same as FORTRAN IV and it was developed to promote interchangea-

bility of FORTRAN programs between computers. Although the standarc

neither precise nor complete enough to insure interchangeability, it

can be used as an aid in writing programs that will have a good chance

of proper execution on a variety of computers. It is recommended that,

whenever practical, programs be restricted to the standard statements

and features. This not only makes it easier to run a program at an-

other installation, but it will probably allow the program to run on

either RRLESC I or BRLESC II and it will simplify the reprogramming

task when ARDC obtains other computers. An attempt is made in this

manual to indicate those statements and features that are nonstandard.

In addition, any things labeled as applying specifically to BRLESC I/II

are also nonstandard. (Most of these things are specific details that

are not covered by the standard rather than being different from some-

thing that is in the standard.) BRLESC I is more nonstandard than

BRLESC II because the BRLtSC I compiler was written before the standard

existed.

12

II. THE CHARACTER SET

FORTRAN allows the use of the twenty-six capital letters of the

alphabet, the decimal digits 0 to 9 and the special symbols + - () .

* / , = $. (BRLESC II and some computers also allow ').

The card code for these characters is the same as normally used
*

for BRLESC I/II and most other computers and is sometimes referred to

as "BCD" code. (See Appendix E.)

Within Hollerith constants and hollerith information in formate,

BRLESC I/II allow the use of all 64 characters except BRLESC II does

not allow # and \ .

Within FORTRAN statements, the blank character is ignored except

within hollerith constants and hollerith information in formats. Blanks

are not required within any statements and the insertion of blanks does

not change the meaning of the statement.

III. SYMBOLIC NAMES AND CONSTANTS

General Names

In FORTRAN, all symbolic names (other than statement numbers) must

begin with a letter and, for variables, the first letter usually deter-

mines the type of number it represents. Names of variables that begin

with I, J, K, L, M or N represent integer numbers unless they are de-

clared to be of some other type in a type-statement. Names beginning

with other letters (A-H, 0-Z) represent real (floating point) numbers

unless they are declared to be of some other type in a type-statement.

The length of symbolic names is restricted to six characters in

the standard and on most computers. A few computers allow eight charac-

ters. If names longer than six characters are used on BRLESC I/II, the

first five characters and the last non-F character will be used as the

name.

Statement Numbers

Locations of statements (cols. 1-5 of FORTRAN statement cards)

13

must be all decimal digits and thus look like integer numbers but are

really symbolic locations of statements. Leading zeros and all blank

columns are ignored. (Statement numbers must be less than 32768 for

some computers, but not BRLESC I/II.) On BRLSSC I/II, statement num-

bers may be written in place of a variable name by writing an S3 after

the statement number, e.g., as an argument in a CALL statement, 33S

would represent statement number 33.

Constants

1. Integer constants are written without a decimal point. An

integer constant on BRLESC I/II may consist of 1 to 17 decimal digits.

Some computers restrict integer constants to as few as four decimal

digits. The values of integer variables on BRLESC I/II must be less
64

than 2 in absolute value except the divisor and quotient of integer
34

divide operations must both be less than 2 in absolute value.

2. Real (floating point) constants must be written with a decimal

point or an exponent. They may consist of a decimal point with 1 to 17

decimal digits (on BRLESC I/II) and may be followed by an E or D and a

signed decimal exponent. (The D indicates double precision constants,

however BRLESC I/II uses the same precision of sixteen decimal digits

for both single and double precision.) The decimal point is not requir-

ed when there is an exponent. The BRLESC I/II range of floating point

constants (and variables) is between 10 and 10" " approximately in

absolute value with zero also allowed. Most computers have a more re-

stricted range of numbers.

Examples: 1. , 4.21 , .2 , 51.6 E2 , .1E-3 , 3.1 D-l

3. Alphanumeric constants of ten or less characters are allowed

on BRLESC I/II. They must be preceded by nH where n is the number of

characters in the constant. Blanks are not ignored in the n columns

after the H. For interchangeability, it is best to limit n to 4 or 6.

14

BRLESC II also allows the ncnstandard form of enclosing alpha-

numeric constants in apostrophies with a maximum of ten characters be-

tween the two apostrophies, e.g., 'ABC. The appearance of two consecu-

tive apostrophies between the enclosing apostrophies is considered to be

one character which is an apostrophe, i.e., to include one apostrophe

within this type of alphanumeric constant, insert two apostrophies.

For example, 'X'*"1 is really X" and is actually three characters long.

4. The logical constants allowed are ".TRUE." and ".FALSE.".

Note the use of a period at both the beginning and end of these con-

stants .

5. BRLESC I/II do not provide for standard complex arithmetic and

complex constants. On computers that allow complex constants, they con-

sist of the form (r, i) where r is the real part and i is the imaginary

part and both r and i are written as single precision real constants.

6. All octal constants are nonstandard. Octal constants must not

contain more than 22 digits on BRLESC I/II and the value must be less
64

than 2 . Such constants are stored like integers at the right end of

a word. Negative octal constants are not allowed. Octal constants are

allowed only on FORTRAN II type boolean cards with a B in column one

(which are not allowed on BRLESC II) and in DATA statements. In DATA

statements only, the octal digits must be preceded by the letter 0.

Arrays

Blocks of storage are referred to as arrays in FORTRAN and are de-

clared in DIMENSION,COMMON or type-statements. Particular elements of

arrays are identified by subscripts enclosed in parentheses following

the name of the array, e.g., A(3) or B(I,J). One, two, or three di-

mensional arrays may be used. Subscription of variables is done by

substitution (rather than addition) and the lower bound of all sub-

scripts is one. Subscript arithmetic is allowed; BRLESC I/II allow any

integer arithmetic expression that does not itself involve any sub-

scripted variables. However, the most general expression allowed in

15

Standard FORTRAN is C * V + C where C and C are integer constants and

V is an integer variable. Specifically, the only forms allowed by the

standard are; C , V , V + C C ,C*V,C*V+C* ,C*V

IV. ARITHMETIC EXPRESSIONS

The following symbols denote the following operations:

+ addition

subtraction

* multiplication

/ division

** exponentiation

The use of functions (routines with only one result) is also

allowed by writing the name of the function in front of parentheses

that enclose the arguments, e.g., SIN(X). (FORTRAN allows functions to

have more than one argument and commas are used to separate the argu-

ments.) The arguments may t>e arithmetic expressions.

The precedence of operations when not governed by the use of

parentheses is

functions

**

* and /

+ and -

where the operations higher on the list will be performed before those

that a^e lower on the list. Successive + and - operations or suc-

cessive * and / operations will be performed from the left to the right.

Parentheses may always be used to cause the operations to be done in

any desired sequence. Successive exponentiations must always have pa-

rentheses to show the desired grouping.

The standard does not permit implied multiplication (although

some versions do allow it and BRLESC I/II allow it after a right pa-

renthesis).

16

All arithmetic within an expression must be one type (integer or

real) except for integer subscripts, integer arguments and integer powers

of exponentiation in real expressions. The standard does permit real

(single precision) numbers to be combined arithmetically with double

precision or complex numbers.

Parentheses must not be omitted at the ends of an expression. The

number of left parentheses must be the same as the number of right pa-

rentheses in each expression.

Two operations must not appear adjacent to each other in formu-

las; e.g., / - or ** - . The - and + operations may be used as unary

operations at the beginning of an expression or after a left parenthe-

sis, e.g., -A or (-A).

Any operation on integers which does not yield an exact integer

result is truncated except negative integer results of division on

BRLESC I will give the greatest integer that does not exceed the alge-

braic exact result. Thus -42/10 will give -5 on BRLESC I but should

give -4.

From FORTRAN II on the 7090/7094, boolean expressions are allowed

on cards with a B in column one on BRLESC I. The symbols +, *, -

denote the logical operations of or (inclusive), and, and not respec-

tively. BRLESC I performs these operations on the rightmost 65 bits of

a word and the leading 3 bits of the word will be zeros after a logical

operation. Note that FORTRAN IV has provided a new way of writing

these logical operations as explained in Section VI below.

FORTRAN II double precision arithmetic expressions are allowed on

BRLESC I (a D in col. 1) but are done in BRLESC I single precision

which is as accurate as 7090/7094 double precision.

Complex arithmetic expressions are not presently allowed in

BRLESC I/II FORTRAN. An I in column one or a complex type-statement

will cause an error print.

17

V. ARITHMETIC ASSIGNMENT STATEMENTS

The general form of FORTRAN arithmetic assignment statements is

v ■ ae

where v is a name of an arithmetic variable (it may be subscripted)

and ae is an arithmetic expression. An example would be

X(J + 1) - A(J)**2 - V/(T + 3.)

The arithmetic expression is evaluated and the result is stored

as the new value of the variable whose name is on the left of the =

symbol.

No arithmetic may be performed on the left of the = symbol except

for subscript arithmetic. The standard and most computers allow only

one = symbol and hence only one variable will have its value changed by

an arithmetic formula.

However, BRLESC I/II allow up to 24 variables to be changed by the

result of one arithmetic expression by writing arithmetic statements

jf the form vn = ... = v2 = vl = ae where the result is stored in vl,

v2, ..., vn and in that order, e.g., A = I - X is the same as two

statements I ■ X followed by A ■ I.

If the type of the variable on the left of the = symbol is differ-

ent than the type of the expression on the right of the = symbol, the

value of the expression is automatically converted to agree with the

type of the variable before it is stored.

The arithmetic expression may be just a name of a variable or

constant, e.g., X ■ A.

On BRLESC I/II, if the arithmetic expression is a hollerith con-

stant or contains a hollerith constant, the type of the variable v will

not cause a conversion to be done. For interchangeability, it is best

to use integer variables to contain hollerith information because an

attempt to convert it to real will almost always cause the information

to be changed. The standard does not allow hollerith constants to

appear in arithmetic expressions although most computers do allow this.

18

15WS!*?k» s-

VI. LOGICAL EXPRESSIONS

FORTRAN permits the use of logical variables and expressions that

assume either the value .TRUE, or the value .FALSE.. The following

three logical operations are defined using a and b to represent logical

variables or logical expressions:

.NOT.a is .TRUE, when a is .FALSE, and is .FALSE, when

a is .TRUE.

a.AND.b is .TRUE, when both a and b are .TRUE, and is

.FALSE, when either a or b or both are .FALSE.

a.OR.b is .TRUE, when either a or b or both are .TRUE.

and is .FALSE, only when both a and b are .FALSE.

Two adjacent logical operations may be used only when the second

one is .NOT.. Thus .AND..NOT. is legal but .NOT..AND. is illegal.

The use of .NOT..NOT. is illegal but .NOT.(.NOT. is legal.

A relational expression that consists of a comparison of two

arithmetic variables or expressions may be used to form logical ex-

pressions. FORTRAN uses the following relational operators: (x and y

represent arithmetic variables or arithmetic expressions.)

x.EQ.y is .TRUE, only if x = y.

x.NE.y is .TRUE, only if x ft y.

x.GT.y is .TRUE, only if x > y.

x.GE.y is .TRUE, only if x St y.

x.LT.y is .TRUE, only if x < y.

x.LE.y is .TRUE, only if x < y.

Whenever the relational expression is not .TRUE., it is .FALSE..

The arithmetic quantities x and y must be of the same type in any one

relation unless one is real and one is double precision, e.g., if I is

integer in I.LT.J, then J must also be integer.

19

On BRLESC I/II, the operands for .EQ. and .NE. could be logical

variables but this is not true for most other computers.

It is illegal to use one arithmetic quantity as the operand for

more than one relation. Hence the mathematical expression x < y < z

must be written as X.LT.Y.AND.Y.LT.Z and not as X.LT.Y.LT.Z.

A logical expression is any legal combination of logical oper-

ations and relational expressions. Parentheses may be used to obtain

any desired grouping of operations. In the absence of parentheses,

the operations are performed in the following order:

Arithmetic operations: Functions

**

* and /

+ and -

Relations: ,LT..LE..EQ..NE.,GT..GE.

Logical operations: .NOT.

.AND.

.OR.

Note that all the relations have equal precedence which means

that they will normally be evaluated from left to right. Note also

that .NOT. has a higher precedence than .AND. and .OR. and hence will

be performed before the other two logical operations.

Logical Assignment Statements:

Logical expressions may be used in logical IF statements (see

Section VIII, item 6) and in logical assignment statements. Logical

assignment statements have the general form

v = le

where v is the name of a logical variable and le is a logical ex-

pression. The value stored in v will be .TRUE, or .FALuE. as deter-

mined by the evaluation of the logical expression le.

20

Examples of logical assignment statements:

(I,J,X and Y represent arithmetic variables and A,B and C represent

logical variables.)

A - .FALSE.

C - A.AND..NOT.B

B = .NOT.(A.0R.B)

A = I.LE.3

B = I.EQ.J.AND.(B.OR.X.LE.Y)

C = 3.:.416.GT.X+Y.OR.I*J.GT.1000

Logical Masking Statements:
—

To improve compatibility with CDC FORTRAN, BRLESC I/II allow non-

standard logical masking statements. The operations .NOT.,AND., and

.OR. may be used with arithmetic operands to accomplish bit-by-bit logi-

cal operations using the last 65 bits of BRLESC I words and all 68 bits

of BRLESC II words.

An example of a logical masking statement would be

T = X.AND..NOT.Y

where X and Y are arithmetic variables (real or integer) and T may be

any type of variable. This example will do a bit-by-bit product of X

and the complement of Y and will store this result in T without any

conversion.

21

!
VII. SPECIFICATION STATEMENTS

This group of statements (DIMENSION, COMMON, EQUIVALENCE, EXTERNAL

and type-statements) provides information to the compiler and may be

used by the programmer to control the storage assignment of some or all

of the variables. These statements do not cause any machine code to be

generated for running the program; they only affect the way it is com-

piled.

1. DIMENSION Statement;

DIMENSION a(i), b(il,i2), e(i3,i4,i5),...

where a,b,c are array names and the i's are integer constants or

integer dummy arguments.

This statement is used to declare the names and maximum sizes of

arrays. The maximum subscripts are enclosed in parentheses and they

must be decimal integer constants except integer dummy arguments may be

used in subprograms if the array being declared is also a dummy argu-

ment. (See SUBROUTINE statement description.) The minimum subscript

is always taken to be one. One, two, or three dimensional arrays may

be declared in any sequence.

Arrays may also be declared in COMMON and type-statements with

only one declaration allowed for the same array. BRLESC I requires

that the very first appearance of an array name must be its declaration.

Example: DIMENSION T(41),X(10),E(4,4,4),A(3.7)

2. COMMON Statement:

COMMON a,b,c,d,e,...

where a,b,c,d,e are thr. names of variables of any type. Dummy argu-

ment names are not allowed.

This statement allows the programmer to specify that certain

variables and arrays are the same in more thar one program or subpro-

gram (subroutine or function). The storage a signed to those items in

the COMMON statements in one subprogram is the same storage assigned to

22

-

the items in the COMMON statements in each of the other subprograms and

the main program. Thus it also has an equivalence effect between sub-

programs. Note that correspondence is by storage and not by name, i.e.,

variables of the same name in different subprograms are the same only

if they are assigned the same storage. All storage used in each sub-

program is different than the storage in any other subprogram except

for the items that are listed in COMMON statements.

Within each subprogram, all COMMON variables are assigned con-

secutively in the. sequence in which they appear. The starting point

for all the subprograms within each total program is the same. Proper

space is left for arrays.

COMMON statements are used to avoid listing many arguments when

using a subprogram. By forcing the main program and subprograms to

use the same storage for some (and possibly all) of the variables, the

need for specifying and moving variables is removed.

If any COMMON variable also appears in an EQ.ÜTVAUENCE statement,

the COMMON assigning has priority and is done first.

Dimension information may be specified in COMMON statements.

However any one array must not be dimensioned more than once in the

same program or subprogram, i.e., if an array name in a COMMON state-

ment contains dimension information, it must not also be dimensioned in

a DIMENSION or type-statement.

Standard FORTRAN and FORTRAN IV allow labeled COMMON blocks. A

group of names may be preceded by a slash, a label name and another

slash to give a name (label) to a section of the COMMON storage area.

By using labeled COMMON, it is not necessary to think of COMMON as one

big block. Whenever the same label is used in different subprograms,

the corresponding members of the two labeled blocks will be assigned

the same storage positions regardless of the relative position of the

label within the respective COMMON statements. The following example

will illustrate the meaning of labeled COMMON. If the first or" the

23

following COMMON statements appears in one subprogram and the second

COMMON statement appears in a different subprogram within the same com-

plete program,

COMMON A,X/LA/B,X,W/AA/P,M,N

COMMON A, Y/AA/F,Ml,Nl/LA/E,J,W//Z

then the names A,P and W refer to the same quantity in both of the sub-

programs. The names X,B,I,M and N within the first subprogram refer to

the same quantities respectively as the names Y,E,J,M1 and Nl in the

second subprogram. In the second subprogram, the blank COMMON consists

of A,Y and Z because two consecutive slashes cause the following

quantities to be added to the blank COMMON block. Blank COMMON blocks

do not have to be the same length in each subprogram. However labeled

COMMON blocks of the same label must be the same length whenever they

are used in different subprograms within the same complete program ex-

cept BRLESC I only requires that the longest one appear first.

(Length is defined as the amount of memory space used.) Any common

block, including blank common, can be lengthened by an EQUIVALENCE

statement except BRLESC I does not allow lengthening of labeled common

blocks. Label names may be any legal FORTRAN name except the names of

subroutines and functions may not be used. It is permissible to use

the same name for a label and a variable within the same subprogram.

A subprogram may have more than one COMMON statement. Additional

COMMON statements simply extend the list of COMMON variables. The use

of the same label again within the same subprogram simply extends the

list of variables in that labeled block. Thus the two consecutive

statements

COMMON A,B,C/T/F,G

COMMON E/T/R.S//V

are the same as the single statement

COMMON A,B,C,E,V/T/F,G,R,S

24

On PRLESC I/II, the statements COMMON(USE MAIN) or COMMON(USE

PREVIOUS) may be used instead of repeating long COMMON statements in

a subprogram when all of the COMMON variables are identical with tie

main program or the previous subprogram. BRLESC II will assign double

precision variables two storage positions when they appear in COMMON

statements. However BRLESC I will assign only one storage position

which can cause incorrect correspondence if a double precision variable

was supposed to correspond to two real, integer, or logical variables.

3. EQUIVALENCE Statement:

EQUIVALENCE (a,b,c,...), (d,e,f,...),...

where a,b,c,d,e,f are names of any type of variable or subscripted

array name. Dummy argument names are not allowed.

This statement causes different names to be assigned to the same

storage space. All the names within a set of parentheses are made

equivalent by assigning them the same storage space.

Subscripts on array names may be either a single integer constant

or the proper number of integer constant subscripts, i.e., the correct

number of dimensions. BRLESC I/II allow array names without subscripts

to imply the first element of the array. BRLESC I also allows a single

subscript on nonarray names; it acts like an increment when the storage

is assigned and a subscript of one is the same as no subscript.

Whenever arrays are partially or completely overlapped, space is

always reserved for all of the arrays involved so that there is no un-

expected overlapping of storage. However, EQUIVALENCE will not rear-

range COMMON storage; so equivalencing a larger array with a member of

COMMON may cause additional overlapping of storage space.

It is illegal to use EQUIVALENCE to try to cause any impossible

arrangement of storage. It cannot be used to attempt to cause non-

consecutive spaces to be assigned to elements of an array, to extend

backward the beginning of the COMMON storage area or to equivalence two

variables that are both in COMMON. It is also illegal for names of

25

-

.

dummy arguments to appear in an EQUIVALENCE statement.

It is permissible to use EQUIVALENCE to extend the end of blank

common or any labeled common block except BRLECC I does not permit such

lengthening of a labeled common block.

On BRLESC I, it is illegal to equivalence anything to itself,

either directly or indirectly.

On BRLESC I, any EQUIVALENCE statement that contains names of

arrays and variables that are also in COMMON statements must appear

after the DIMENSION and COMMON statements.

Example: EQUIVALENCE (A,B), (F(2,1) ,C,H(1))

4. Type-Statements:

Type-statements may be used to declare that specified variable

names represent variables of a specified type. If a name does not

appear in a type-statement, then its first letter determines whether

it represents an integer or a real (floating point) number. However,

a type-statement near the beginning of a program may be used to override

(or confirm) the automatic type assignment or to declare a variable to

be of some other type. A function name may appear in a type-statement

if it is not the name of the subprogram containing the type-statement.

The following are type-statements:

INTEGER a,b,c,...

REAL a,b,c,...

DOUBLE PRECISION a,b,-.,...

LOGICAL a,b,c,...

COMPLEX a,b,c,...

where a,b,c,... represents a list of variable and function names. On

BRLESC I/II, DOUBLE PRECISION is used the same as REAL since double

precision on most other computers is the same as BRLESC I/II single

precision and the COMPLEX statement is not allowed because complex

arithmetic is not allowed.

26

Variable array names in type-statements may also contain dimension

information. However the same variable must not %lso be dimensioned

elsewhere, i.e., it must not also appear in a DIMENSION statement or be

dimensioned in a COMMON statement.

The names of all logical variables must be declared in a LOGICAL

statement as there is no other method of distinguishing them from other

variables.

The type-statements must precede all of the executable statements

and DATA statements within each subprogram or main program. Note that

type-statements are nonexecutable; they cannot be used between execu-

table statements to cause any execution data conversion.

BRLESC I/II allow any of these type-statements to be preceded with

the word TYPE because CDC FORTRAN allows this. It is for this reason

that the names TYPEI, TYPER, TYPED, TYPEL and TYPEC must not be used as

names of variables at the beginning of any statement on BRLESC I and at

the beginning of the first executable statement (within each subprogram)

on BRLESC II. (CDC and BRLESC I/II do not use the word PRECISION when

DOUBLE is preceded by TYPE.)

BRLESC II will ignore an * and a decimal integer after the initial

word of a type-statement and after a name, e.g., REAL * 8 M, R * 4, K

is the same as REAL M, R, K.

Examples of type-statements:

REAL MASS, N2,LA(5,6),X

INTEGER A,F,I(15)

LOGICAL LV,T,WAY,LOW(18),NOW

5. EXTERNAL Statement:

FORTRAN requires this statement to be used whenever names of sub-

routines and functions are used as arguments for other subroutines or

functions. It serves the same purpose as the card with F in column one

did in some FORTRAN II compilers. The general form of the statement is:

27

EXTERNAL a,b,c,...

where a,b,c,... represents a list of function and subroutine names.

For BRLESC I, any statement function names used as arguments must

also appear in an EXTERNAL statement. However, standard FORTRAN does

not allow statement function names to appetr in EXTERNAL statements or

to be used as actual arguments. For BRLESC I, if the name of a function

appears in both a type-statement and an EXTERNAL statement, the type-

statement must precede the EXTERNAL statement.

Example:

EXTERNAL SIN.COS.FUN

28

VIII. CONTROL STATEMENTS

This group of statements provides for controlling the sequence in

which statements are executed. Unconditional transfer of control,

which is sometimes called branching or jumping, is provided by several

types of GOTO statements and conditional transfer of control is pro-

vided by several types of IF statements. A DO statement allows defi-

nition of a "loop" and a CALL statement causes transfer of control to a

subroutine with a return to the next statement. There are two state-

ments, STOP and PAUSE, that cause the program to stop running. In the

absence of control statements, the executable statements are executed

consecutively in the order of their physical appearance beginning with

the first executable statement of the main program.

1. GOTO Statement:

GOTO s

where s is a statement number. This statement causes the statement num-

bered s to be executed next.

Example: GO TO 22

2. Computed GOTO Statement:

GOTO(sl,s2,s3,...), i

where sl,s2,s3,... are statement numbers and i is a nonsubscripted in-

teger variable. The statement executed next depends on the value of the

variable i. If i = 1,statement si is done next; if i = 2, statement s2

is done next; etc. It is illegal for the value of i to be zero, nega-

tive, or larger than the number of statement numbers specified.

On BRLESC I/II, i = 0 causes the computer to cycle on one jump

instruction that jumps to itself and an i that is too large causes the

computer to jump to some statement or portion of statement that physi-

cally follows the computed GOTO statement. BRLESC I/II allows a maxi-

mum of 100 statement numbers to appear in this statement.

Example: G0T0(4,19,462),K

3. ASSIGN Statement:

29

ASSIGN s TO i

where s is a statement number and i is a nonsubscripted integer variable.

This statement is used only in conjunction with the "assigned GOTO"

statement (see 4. below) and is to be executed prior to the execution of

the assigned GOTO statement. After execution, the value of i is not an

integer number. On BRLESC I/II, it is the address of the statement num-

bered s.

Example: ASSIGN 64 TO M

4. Assigned GOTO statement:

GOTO i, (sl,s2,s3,...)

where i is a nonsubscripted integer variable and sl,s2,s3,... are

statement numbers. This statement causes statement sl,s2, or s3 etc.

to be executed next depending on which statement number was assigned

to i by the previous execution of an ASSIGN statement. BRLESC I/II do

not check whether or not the assigned statement number appears in the

list and do not even require that the list appear although the list

should be included as documentation and it is required by the standard.

Example: ASSIGN 44 TO N

GOTO N, (16,29,44,192)

5. Arithmetic IF Statement:

IF(ae)sl,s2,s3

where ae is an arithmetic expression and sl,s2, and s3 are statement

numbers. This statement causes statement sl,s2 or s3 to be executed

next depending on whether the value of ae is negative, exactly zero, or

positive respectively.

Examples: IF(X)4,7,22

IF(R*V-4.1*(U+V))16,244,16

6. Logical IF Statement:

IF(le)st

where le is any logical expression and st is any executable statement

30

except a DO statement or another logical IF statement. The statement st

is executed if the value of the logical expression is .TRUE, and con-

trol simply goes to the next sequential statement if the value is

.FALSE..

Examples:

IF(X.LT.5..AND.L.GE.70)GOTO 49

IF(I+JeEQ.14.0R.PRT)WRITE(2,16)A,B,C

(where PRT is a logical variable)

7. Two Branch IF Statement:

IF(e)sl,s2

where e is either a logical or arithmetic expression and si and s2 are

statement numbers. This statement is not standard but is allowed on

BRLESC I/II and CDC computers. Statement si is executed next if e is

.TRUE, (or nonzero for arithmetic expressions) and statement s2 is ex-

ecuted next if e is .FALSE, (or zero for arithmetic expressions).

Examples: IF(X)22,471

IF(X.GT.O..AND.L)962,1075

8. DO Statement:

DO s i = il,i2,i3

or

DO s i = 11,12

where s is a statement number, i is a nonsubscripted integer variable

and il,i2,i3 are unsigned integer constants or nonsubscripted integer

variables that must be greater than zero when the DO statement is ex-

ecuted. The statement numbered s is called the terminal statement and

it must physically appear somewhere after the DO statement. The sequence

of statements that appear physically following the DO statement down to

and including the terminal statement is called its range.

A DO statement causes its range to be executed repeatedly with

the integer variable i initially assuming the value of il. The variable

i is incremented by i3 after each execution of the terminal statement

31

and Che sequence is repeated if ':he new value of i does not exceed i2.

If il > i2 initially, CDC FORTRAN will not execute the loop even once

whereas BRIESC I/II and most other computers will always execute a DO

loop at least once. Standard FORTRAN does not permit il > i2 in-

itially.

The specification of i3 is optional. If i3 is not specified,

its value is taken as one.

The terminal statement must be executable and not any form of

GOTO, arithmetic IF, RETURN, STOP, PAUSE, or DO Statement, nor any logi-

cal IF statement containing any of these statements.

For standard FORTRAN, the DO parameters, 1,11,12 and i3, must

not be changed within the range (or extended range) of the associated

DO statement. BRLESC I/II will allow these parameters to be changed.

If a DO loop is exited by some statement other than the normal

completion of the loop, the variable i will have its most recent value

available for use. However, this variable is not available when the

loop completes execution in the normal manner because not all computers

will have i set to the same value. BRLESC I/II will have i set to the

value that it would have had if the loop would have been executed one

more time, i.e., the first value of i that exceeds i2 or il + i3,

whichever is larger. The variable i is available within the range (and

extended range) for use as either a subscript or integer variable.

In standard FORTRAN, it is illegal to transfer control into the

range of a DO loop from outside its range (except for a return from an

extended range), i.e. the DO statement must always be executed before

any statements within its range are executed.

A DO range may contain other DO statements. However, any DO

statement that appears within the range of another DO statement must

terminate on or before the terminal statement of the DO statement that

appeared first. More than one DO statement may use the same terminal

statement.

32

If a group of statements are logically but not physically with-

in the range of a DO statement, that group of statements is called m

extended range. BRLESC I/II do not have any special restrictions on the

use of one or more extended ranges. However the standard allows extend-

ed ranges only from the innermost range of a "completely nested nest"

of DO loops and does not allow an extended range to contain any DO

statements that have extended ranges. A completely nested nest is a

group of DO loops, which must include all DO statements that are in the

range of the first DO statement of the group, where all of the DO state-

ments appear before any of the ranges are terminated and the first DO

statement of the group is not in the range of any other DO statement.

Examples: DO 42 K = 1,L

DO 3 JT = MIN, 55, NSTEP

9. CONTINUE Statement:

CONTINUE

This is a dummy statement that generates no object code except

when it is the terminal statement of a DO loop. It must be used as the

terminal statement of a DO loop whenever the last statement would have

been an arithmetic IF or GOTO type of statement that transfers control.

Whenever a CONTINUE statement is the terminal statement of a DO loop on

BRLESC I/II, its statement number is the location of the machine in-

structions that increment the DO variable and test for its maximum value.

10. STOP Statement:

STOP or STOP w

where w is an octal constant of not more than five digits that is ignor-

ed.

This statement causes the execution of a program to be termi-

nated and should be used only to indicate that the program has run to

completion. This statement causes BRLESC I/II to e^pty the tape output

buffers, rewind all tapes used by the program th^c have not been rewound,

check for overflows and halt at N40. On BRLESU I/II, the program may

33

also be terminated by reading a card or tape line that has the first ten

characters of either "ENDbTAPEbb" or "bbbbbbPROB" where b represents a

blank.

Examples: STOP

STOP 77

11. PAUSE Statement:

PAUSE or FAUSE w

where w is an octal constant of not more than five digits.

This statement causes the program to halt and display the oc-

tal constant. (BRLESC I displays it in the or address of the halt

order. BRLESC II displays it in the A register and in the address o::

the halt order.) If th? con^uter is restarted manually by pressing

the proper button (initiate on BRLESC I/II), the program will continue

with the next statement,,

This statement should not be used without a very good reason

for using it.

Examples: PAUSE

PAUSE 421

or

12. CALL Statement:

CALL a(b,c,d)

CALL a

This statement causes the subroutine named "a" to be entered

and executed with b,c,d,... as the arguments. (Arithmetic expressions

are allowed as arguments.) The subroutine being called must be one

whose code is included in the program as a SUBROUTINE subprogram or one

that is automatically made available by the compiler.

The arguments used in a CALL statement must agree in type with

the type of the dummy arguments that were used when the subroutine was

34

defined. If there are no arguments, they may be omitted.

CALL EXIT or CALL DUMP statements on BRLESC I/II are the same

as a STOP statement and CALL PDUMP is ignored.

Alphanumeric constants of ten or less characters are allowed

as arguments on BRLESC I/II.

BRLESC I/II allow "blank arguments" to be used by omitting an

argument name and writing just a comma except that the last argument

must; not be blank. Blank arguments are actually optional arguments and

may only be used with subroutines (and functions) that specifically

allow them.

Examples: CALL SUB3(X,Y,R)

CALL TOTAL

13. Test Sense Switch Statement:

IF (SENSE SWITCH i) si,s2

where i is an integer constant (H i < 6) and si and s2 are statement

numbers.

This nonstandard statement transfers control to statement si

or s2 if sense switch i is down or up respectively. On BRLESC I, the

manual re?d switches 15-20 are used as sense switches 1 to 6 respect-

ively. On BRLESC II, the manual read switches labeled 33, 37, 41, 45,

49, and 33 are used as sense switches 1 to 6 respectively; L is "up",

«ny other value is ''down". However, these switches may be preset by a

program control card to be either "down" or "up" regardless of their

actual position. (See SETSSW in Section XVIII.)

Example: IF (SENSE SWITCH 3)14,92

FORTRAN IV does not usually allow this statement. Instead a

subroutine SSWTCH is predefined. The general form of its use is

CALL SSWTCH (i,j)

where i is the number of the sense switch to be tested and j is set to

1 if it is down and j is set to 2 if it is up.

35

14. Set Sense Light Statement:

SENSE LIGHT i

where i is an integer constant (0 £ i £ 4). If i is 0, then all sense

lights are turned off. If 1 £ i < 4 (actually 6 on BRLESC I), sense

light i only will be turned on. The rightmost four (actually six) bits

of cell 062 on BRLESC I are used as sense lights. Initially on BRLESC

I, all of them are off. This is a nonstandard statement and is not

allowed on BRLESC II.

Example: SENSE LIGHT 2

FORTRAN IV does not usually allow this statement. Instead, a

subroutine SLITE is predefined. The general form of its use is

CALL SLITE(i)

where i is the number of the sense light to be turned on. If i = 0,

all sense lights are turned off. BRLESC II allows the SLITE subroutine.

15. Test Sense Light Statement:

IF(SENSE LIGHT i)sl,s2

where i is an integer constant (l ä i s 4) and si and s2 are statement

numbers. If sense light i is on, it is turned off and statement si is

executed next; otherwise statement s2 is executed next. BRLESC I allows

i to be as large as 6. This is a nonstandard statement and is not

allowed on BRLESC II.

Example: IF (SENSE LIGHT 2)67,39

FORTRAN IV does not usually allow this statement. Instead, a

subroutine SLITE! is predefined. The general form of its use is

CALL SLITET(i,j)

where i is the number of the sense light to be tested and turned off.

If the light was on, j will be set to 1 and if the light was off, j

will be set to 2. BRLESC II allows the SLITET subroutine with

36

16. Test Overflow Statement:

IF ACCUMULATOR OVERFLOW sl,s2

where si and s2 are statement numbers. This nonstandard statement

checks for floating point exponent overflow on BRLESC I and executes

statement si next if it has occurred. Otherwise statement s2 is exe-

cuted next. (The very last operation may not be included in the check

on BRLESC I and this test turns the indicators off if they wr-e on be-

fore.) BRLESC II always executes statement s2 next when this statement

is executed. BRLESC II halts as soon as overflow occurs, therefore this

statement is never executed after overflow has occurred.

FORTRAN IV does not usually allow this statement or the IF

QUOTIENT OVERFLOW statement. Instead a subroutine OVERFL is predefined.

The general form of its use is

CALL OVERFL(j)

where j is set to 1 if the overflow condition was on and j is set to

2 if it was off. The overflow condition is also turned off if it was

on.

17. Test Quotient Overflow Statement:

IF QUOTIENT OVERFLOW sl,s2

where si and s2 are statement numbers. On BRLtISC I/II, this nonstand-

ard statement does exactly the same as the IF ACCUMUIATOR OVERFLOW

statement explained above.

18. Test Division Statement:

IF DIVIDE CHECK sl,s2

where si and s2 are statement numbers.

On BRLESC I, this nonstandard statement checks for floating

point division by zero (or unnormalized divisor) or fixed point division

overflow. If either has occurred in the program, statement si is exe-

cuted next; otherwise s2 is executed next. (The very last operation in

the previous statement may not be included in this test on BRLESC I and

37

this test turns the indicators off if they were on before.) BRLESC II

allows this statement, but it halts whenever a divisor is zero.

FORTRAN IV does not usually allow this statement. Instead a

subroutine DVCHK is predefined. The general form of its use is

CALL DVCHK(j)

where j is set to 1 if either the BRLESC I floating or fixed point di-

vide overflow condition is on and j is set to 2 if both are off. Both

conditions are turned off if they were on. BRLESC II sets j to 2 and

continues execution.

IX. FORMAT STATEMENT

FORMAT (Special Specifications)

This statement is not executed but is used to specify the field

lengths, spacing and the form of the data for either the reading of

input data or the printing (or punching) of output data. It is always

used in conjunction with one of the input/output statements and does

nothing by itself.

Let n = number of cimes to repeat this field, (n is optional,

it is used as 1 if not specified.)

w = the width of the field (tho>. number of columns or charac-

ters).

d = the number of decimal places to the right of the decimal

point. Note that n, v, and d must be unsigned integer constants

greater *;han zero. Then the types of fields that may be specified are:

nlw for integer numbers.

nEw.d for real numbers with exponents.

nFw.d for real numbers without exponents.

wX for spacing or blank columns.

nAw for alphanumeric fields.

wH for alphanumeric (Hollerith) fields where the

characters are read into or printed from the w

38

characters following the H in the FORMAT statement

itself. BRLESC II also allows the use of ' * and $

characters to mark the beginning and end of hollerith

informr. ui. on.

nLw for logical variables.

nDw.d for double precision numbers with exponents.

nGw.d for generalized real numbers.

nOw for Octal numbers, (nonstandard)

nRw for right adjusted alphanumeric fields, (nonstand-

ard)

nZw for sexadecimal numbers on BRLESC II. (nonstandard)

Consecutive field specifications are separated by commas, thus

"FORMAT (I6,3E14.6,F10.7)" is an example of a FORMAT statement. Each

complete FORMAT statement specifies the maximum length of the record

(card or printer line) that will be read, printed or punched when that

FORMAT statement is used.

Three levels of parentheses are allowed in standard FORTRAN and

four levels are allowed on BRLESC I/II so that groups of specifica-

tions may be repeated within a FORMAT statement. A left parenthesis

may be preceded by an integer n to indicate the number of times to re-

peat the specifications enclosed in parentheses. Thus FORMAT (E12.5,3

(I6,F9.3)) would be a format where the I6,F9.3 portion would be re-

peated three times.

If the input/output statement list contains more items than speci-

fied by the format being used, then a new card or line is begun and

the format is repeated from the left parenthesis that is associated

with the next to last right parenthesis. (If there is only one pair

of parentheses, then the format is repeated from the beginning.) If

this parenthesis is preceded by a repeat number, it will be used. If

the format specifies more fields than required for an input/output

list, the rest of the format after the next field specification that

would have required a name from the list is ignored provided the end

39

of the format is not reached first. Note that X and H field specifica-

tions do not require a name from the I/O list.

A slash "/" may be used in a FORMAT statement to indicate that a

new card or line should be started. Thus FORMAT (I10/E15.6) used for

punching cards would cause a ten column integer to be on one card arid a

fifteen column real number to be on the next card. As a general rule,

N consecutive slashes will cause N-l blank lines or cards (or skip N-l

cards for input) except N slashes at the beginning or end of a format

caures (or ignores) N blank lines. A format consisting of only N

slashes will cause or skip N+l blank lines. An empty format will cause

or skip one blank line. Note that when one or more slashes are used

between field specifications, the normal separating comma is not re-

quired .

Scale factors may be used with F type specifications (and in a

limited way with E type specifications). An integer, s, specifies the

power of ten (scale factor) to multiply the internal number by to ob-
g

tain the external number, i.e., input numbers get divided by 10 (not

on BRLESC I) and output numbers get multiplied by 10 . The integer s

is written in front of the nFw.d specifications and the letter P is

used to separate s and n, e.g., -2P4F10.5 or -2PF15.5 specify a scale
_2

factor 10 . Note that a minus sign is permitted to precede s but an

explicit + sign is not permitted. Once s has been specified, the scale

factor remains in effect for the rest of that FORMAT statement (in-

cluding repetitions) and will be used on subsequent E and F type fields.

A oP specification may be used to reset it to zero. For input, a

punched exponent causes the scale factor to have no effect. For E

fields on BRLESC I, only a positive scale factor may be used and it

does not change the value of the number; it only indicates that s

digits should be printed in front of the decimal point. (It has no

meaning for input E fields.) Thus the number 2 would normally print

0.20E 01 for s = 0, but for s = 1, it would print 2.00E 00 and for

s=2, BRLESC I would print 20.00E-01, but BRLESC II would print

40

20.0E-01 which is the standard form. Thus for s > 1, BRLESC I prints a

total of s+d digits, but BRLESC II prints d+1 digits provided that

d a 8-1. For a negative scale factor in E fields on BRLESC II, -s

leading zeros are printed as part of the d digits after the decimal

point which is as specified in the standard.

All output fields are right adjusted and are preceded with enough

blanks to fill the field. The sign, if any, immediately precedes the

numeric value. An all blank numeric input field will be converted to

zero.

i' Fields

Input: Most compilers assume the integer to be punched at the

right end of the field without a decimal point; however,

BRLESC I/II will accept it any place within the field and

it may have a decimal point. Any digits following a point

are ignored on BRLESC I/II.

Output: The integer will be punched at the right end of the field

with a floating sign. (All output has a floating sign

which means that the sign is in the column preceding the

leftmost digit that is printed.) Leading zeros are not

printed on I or F fields. If the integer is zero, a single

zero is printed at the right end of the field. If the

integer is too large for the field, BRLESC I prints an all

blank field and BRLESC II prints asterisks.

E Fields

Input; The number may or may not have an exponent. An E or a

sign, but not a blank, may be used to indicate the starting

of an exponent. The exponent may be less than four columns.

If a decimal point is punched, it is used and overrides the

d specification. If no decimal point is punched, then it

is assumed to be after d digits (columns) left from the

start of the exponent. Most compilers require that, the

41

number be punched at the right end of the field, but BBLESC

I/II allow it anywhere within the field. Blank columns are

used as zeros (except after the exponent on 3RLESC I/II).

BRLESC II applies the scale factor only if the number does

not have an exponent.

Output: The real number will be printed with a four column expon-

ent that includes an E, a sign, and two digits for the

value of the exponent. For exponents larger than 99,

BRLESC I will use five columns for the exponent, BRLESC II

will eliminate the E and print an explicit sign and a

three digit exponent. If s s 1, a decimal point is printed

d digits from the right end of the coefficient and if

s = 0, a zero is printed in front of the decimal point.

If s ä 1, then s digits of the coefficient are printed to

the left of the point and BRLESC I prints d digits after

the point but BRLESC II prints d-s+1 digits to the right

of the point. If s < 0, BRLESC II prints -s leading zeros

within the d fractional digits. Note that the scale factor

does not change the value of the number printed. The sign

immediately precedes the first digit printed. The entire

number is printed at the right end of the field of w

columns.

F Fields

Input: The same as E fields, see above.

Output: The real number will be printed without an exponent and

the decimal point will be printed d digits from the right
s

end of the field. The actual number printed is 10 times

the number that is in the computer. If the number is too

large for the columns specified, BRLESC I/II will print

the number with an exponent or as much of the right por-

tion of such a number as is permitted by the field width

42

- ■ - -■-'■'■

H Fields

Input:

Output:

Fields

except BRLESC II will print asterisks if the width is less

than four columns.

Tne alphanumeric information is stored in the FORMAT

statement itself immediately following the H. No trans-

formation of characters is done; the sign option setting

for numeric input on BRLESC I/II has no effect on H

fields.

The w alphanumeric characters that immediately follow

the H are printed. Blanks are not ignored. All 64

characters are permitted except BRLESC II does not permit

and \. However, other computers will probably not

print the same character as BRLESC I/II if the character

is not in the FORTRAN character set. For tape output, if

an H field occurs at the beginning of a line, the firs'r

character is used by the printer for vertical spacing con-

trol instead of actually getting printed. The first

character is always printed when the PUNCH statement is

used on BRLESC I/II.

BRLESC II allows apostrophies to mark the beginning and

end of hollerith information in FORMAT statements, e.g.,

'ABC is the same as 3HABC. An apostrophe can be in-

cluded within the string of characters by using two suc-

cessive apostrophies to represent each one apostrophe

that is to be included, e.g., 'X1"" would print as X"

but note that this would read five characters from an in-

put line. Apostrophies in an input line are used just as

they appear and therefore they must appear in pairs. The

number of characters taken from an input line is determined

by the number of characters that appear between the be-

ginning and ending apostrophies.

43

* and $ Fields

BRLESC II allows * and $ characters to mark the beginning

and end of hollerith information in FORMAT statements in

the same manner as the apostrophe. However the same

character must be used at both the beginning and the end

and that character cannot appear within the string of

characters.

A Fields

Input: BRLESC I/II stores a maximum of ten six-bit characters

per word using the rightmost 60 bits of a word. If

w £ 10, w alphanumeric characters are stored in the vari-

able specified by the input list. If w < 10, the

characters will be at the left of the 60 bits with blanks

to fill out the word. If w > 10, then w - 10 columns will

be ignored before storing the rightmost ten characters of

the field. As with H fields, no transformation of charac-

ters is done. This can be used to read FORMAT specifica-

tions into an array during execution.

Output: This causes w alphanumeric characters to be printed from

the contents of the variable specified by the output list.

The rules listed above for A input are followed so that

whatever is read will be printed exactly the same. When

w > 10, w - 10 blank columns will be printed to the left

of the ten characters that are printed.

X Fields

Input; This causes w columns to be skipped whether they are

blank or not.

Output; Causes w blank columns to be printed.

44

L Fields

Input: If the first non-blank character is a T (or the digit 1 on

BRLESC I/II), the logical value .TRUE, is stored; other-

wise .FALSE, is stored.

Output: A T is printed in the rightmost column of the field if the

value of the logical variable is .TRUE.; otherwise an F is

printed in the rightmost column of the field.

D Fields

Input &
Output:

G Fields

Input &
Output:

This is allowed for those computers that use double pre-

cision variables. On BRLESC I/II, it is used exactly the

same as an E field.

BRLESC I/II use G fields exactly the same as F fields.

0 Fields

Ingut: This allows octal numbers to be read and stored at the

right end of BRLESC I/II words in tl.e same manner as in-

tegers. On BRLESC I/II, if w > 22, the leading columns

will be used and will cause more than 64 bits to be stored

if they are not blank and it is illegal to store more than

64 bits.

Output; This allows integers (octal or decimal) to be printed in

octal form at the right end of the field with leading

zeros suppressed. If w > 22, w-22 blank columns are

printed to the left of the 22 octal digits.

R Fields

Input &
Output:

Only a few computers and BRLESC I/II allow R fields.

They are exactly like A fields except when w < 10, the

characters are stored into (or printed from) the right

end of the computer word.

45

Z Fields (BRLESC II only)

Input: If w < 17, store w sexadecimal characters in one BRLESC II

word. If w > 17, store the rightmost 17 sexadecimal

characters of the field and ignore the other characters.

Output: If w s 17, print the rightmost w sexadecimal characters.

If w > 17, print all seventeen sexadecimal characters from

one BRLESC II word in the rightmost 17 columns of the

field. Leading zeros are suppressed.

FORMAT statements may be placed anywhere within a program (or sub-

program) except as the last statement within a DO loop. (A few compu-

ters do not allow them immediately after a DO statement. On BRLESC I/II,

FORMAT statements are done as NOP instructions so it is best not to

place them where they will be done often.) FORMAT statements are kept

as alphanumeric information and decoded at run time, thus it is per-

missible to use A fields to read FORMAT statements (without the word

FORMAT) as hollerith input data during execution. The variable names

of such object time formats must be declared to be an array. The non-

subscripted array name may be used instead of a statement number for

the format identifier in a READ or WRITE statement.

If the list in an output statement is exhausted and the next item

in a format is an H field, the H field is printed. (If the end of the

format and list occur at the same time and an H field follows at the

rescan point, it will not be printed.) The scanning of the format ac-

tually precedes the scanning of the list except at the very end of the

format. Therefore slashes and X fields will also get used from a format

when they appear immediately to the right of the field specification

that corresponds to the last item on the list. The format scan only

stops vhen it.reaches a field descriptor that requires a list item and

the end of the list has been reached, or when both the end of the format

and the end of the list have h^n reached. Note that a format may con-

tain nothing but one or more H fields.

46

■

Blank characters in a FORMAT statement are ignored except within

H fields or sircLlar hollerith information. The w count for an H field

must include the blanks within the H field.

On BRLESC I/II, the comma separating field specifications may be

omitted when it follows an H or X field specification or would precede

or follow a parenthesis or slash. The standard requires commas after H

and X field specifications and a right parenthesis except before and

after the final right parenthesis of the FORMAT statement. Commas are

not required wherever one or more slashes appear.

Examples: FORMAT(315,(E15.8))

F0RMAT(2HX=,F10.4,4(1PE12.5))

FORMAT(6F10.4/4110//)

X. INPUT/OUTPUT LISTS

The names of the variables to be transmitted between the computer

and the input/output devices are specified in a list in the proper type

of input/output statement and the sequence of the names in the list de-

termines the sequence of transmission. Simple variable names, subscrip-

ted array names where the subscript control is either specified in other

statements or within the input/output list, and array names without sub-

scripts are allowed. Array names without subscripts cause the entire

array to be transmitted and the elements must (for input) or will (for

output) be arranged in the same sequence that they are in the computer

memory. Arrays are stored such that the subscripts vary from left to

right, thus t?vo dimensional arrays are stored by columns; i.e., A(l,l),

A(2,l), A(3,'l) etc. is the sequence of elements of the array A. For

dummy argument arrays, the number of elements is determined by the dummy

argument array declaration rather than by the array declaration of the

actual argument although BRLESC I uses the actual argument declarator.

Commas are used to separate the names in an input/output list.

47

Indexing information specified within the list is written after

the names of variables to which it applies and the names and the in-

dexing information are all enclosed in parentheses. For example *

(B(I),I ~ 1,10) would cause the transmission of A, B(l), B(2),

B(10). Note that the indexing information is written the same as in a

DO statement with the increment tal is one if it is not written. It

is permissible to nest these parentheses, e.g., ((A(I,J),I = 1,5),

J ■ 1,5). Note that commas are used to separate items in the list and

must be used after a right parenthesis except for the last one. The

indexing within each set of parentheses is done to completion before

going on to the next indexing specification. On BRLESC I/II, there is

a restriction that when indexes are controlled within an I/O list,

they cannot be used in any subscript arithmetic expression in that list

that requires more than the addition or subtraction of a constant.

All of the input/output statements that transfer alphanumeric

(not binary) data make use of format specifications to specify the

field types and lengths. The type, e.g., integer or real, of a name

specified in an input/output list must correspond to the type of field

specified in the format that is being used. For example, all integer

variables must use I fields. (BRLESC I/II do allow integers to be

printed as integers in E or F fields.) The format controls the maxi-

mum length of each line. A line is shorter than specified in a format,

only when the end of the list is reached before the end of the format.

Whenever the end of the format is reached before the end of the list,

the format is repeated from the left parenthesis that is associated

with the next to last right parenthesis and a new line (or card) is

started. (If there is only one pair of parentheses, then the format is

repeated from the beginning.) (See Section IX for more information

about FORMAT statements.)

Constants and arithmetic expressions are not permitted in I/O

lists, except indexing information may contain constants and subscripts

may be constant or arithmetic expressions. BRLESC I/II allow hollerith

48

and positive decimal constants in I/O lists, but this is nonstandard.

It Is permissible to read an integer variable and use it as a sub-

script within the same input list. However, BRLESC I requires that the

integer variable name be separated from the place it is used by at

least two left parentheses. (This is counting the one used to indicate

a subscripted variable. Extra parentheses may be used just to meet this

requirement.) Thus J,(B(J)) is an example where the value of the varia-

ble J just read will be used as the subscript for B(J). (For BRLESC I,

the extra parentheses are not required if two or more variables or any

indexing information separates the integer from where it is used.)

BRLESC II does not require any extra parentheses and the above example

could be written J,B(J).

Examples: A, B, I

N, M, (BA(N)),P

((A(I,J), J = 1,10), I = 1,10), (R(K), K = 2,20,2)

XI. INPUT/OUTPUT STATEMENTS

The following group of statements may be used to control the flow

of information between the computer and input/output devices or second-

ary storage. Card reading or punching, magnetic tapes and, on some

computers but not on BRLESC I/II, discs may be used to read or write

data. Most of the statements also use a FORMAT statement, or its equiv-

alent stored in an array, to control the conversion of data between com-

puter form and printer or card form. However, the READ(t) and WRITE(t)

statements cause the transfer of data without any conversion. This com-

puter form of data will be referred to as binary information and ac-

tually is binary numbers for binary computers such as BRLESC I/II. The

other statements cause the reading or printing of data in alphanumeri-

cal form. There are three statements, END FILE, REWIND and BACKSPACE

that do not transfer data but can be used to manipulate the magnetic

tapes.

49

In all of the input/output statements described below:

f is a FORMAT statement number or array name.

list is any allowable input/output list (See Section X).

t is a magnetic tape integer constant or integer

variable. (See BRLESC I/II restrictions on t at

end of this section.)

1. Alphanumeric Read Statements;

READ(t,f) list

READ INPUT TAPE t, fs list (nonstandard form)

These statements cause decimal and alphanumeric input data to

be read from tape t, converted according to the format specification

identified by f, and stored in the variables specified by the list.

Each block of BRLESC I/II tape may be as long as 2000 characters and

each line may be as long as 160 characters. If the tape was previous

FORTRAN output that has a vertical space control character at the be-

ginning of each line, provision should be made in the format for skip-

ping that character. However on BRLESC I/II, the vertical space con-

trol character is ignored unless the format has an H field at the

beginning of the line. (If the tape was previous FORAST output, the

vertical space control character is automatically ignored.)

The tape reading is parity checked and there is checking for

end of reel.

If the "list" is omitted with this statement, it will cause

at least one line to be read and ignored. More than one line will be

ignoied only if the format scan encounters a slash before it encounters

a specification that requires a list item.

Just INPUT may be used instead of READ INPUT TAPE on BRLESC

I/II.

50

2. Alphanumeric Write Statements:

WRITE (t,f) list

WRITE OUTPUT TAPE t,f, list (nonstandard rorm)

These statements cause decimal and alphanumeric output data

to be written on tape t, after the variables specified by the list have

been converted according to the format specification identified by f.

Each line of data may not exceed a total of 132 characters. When a

line of output is printed, the first character is used to control the

vertical spacing of the paper an^ is not printed. BRLESC I/II insert

an extra blank to indicate single spacing whenever the first character

does not come from an H field (or ' * or $ field on BRLESC II). When

the first character does come from an H field on BRLESC I/II, that

character is used as a vertical space control character.

The tape writing is parity checked on BRLESC I/II and there

is checking for the end of a reel. The number of lines per reel on

BRLESC I/II will vary from about 70,000 to 200,000 as the length of

each line varies from 132 characters to 1 character.

Just OUTPUT may be used instead of WRITE OUTPUT TAPE on BRLESC

I/II.

3. Binary Read Statements:

READ(t) list

READ TAPE t, list (nonstandard form)

These statements cause binary information to be read from

tape unit t and stored in the variables specified by the list. It

should be used only for reading data that was previously put on tape

by the use of the WRITE (t) statement described below. This statement

will not read more data than we~ specified in the list of the statement

that wrote the data. (Such a group of data is defined to be a "logical

record".) If less than the entire logical record is read, the tape will

move to the end of the record. (If the. list is omitted entirely, the

tape still moves to the next logical record.) If an attempt is made to

51

read more data than is in one logical record, the unused portion of the

list will be ignored on BRLESC I/II, but the standard does not allow

the list to be longe.- than the record.

On BRLESC I/II, binary logical records are subdivided into

tape blocks of 12? words each plus one extra word for a total of 128

words. Within each logical record, the first word of each block is

zero except the first word of the last block contains the number of

words in the lap- block (not counting the first word) and the total

number of blocks. j.n the logical record. The FORAST output of the BT.WR

subroutine can be read by this FORTRAN statement.

4. Binary Write Statements:

WRITE(t) list

WRITE TAPE t, list (nonstandard form)

These statements cause all of the data specified in the list

to be written as binary information in one logical record on tape unit

t. It is useful for temporarily recording data on tape that may be

read back into the computer by using a READ (t) statement at a later

time. See the explanation of the READ (t) statement above for a de-

scription of the way the information is "blocked" on the tape on BRLESC

I/II.

5. Write File Mark Statement:

END FILE t

This statement causes a file mark to be written on tape t.

BRLESC I/II will ignore this statement when tape switch 8 has been

specified and will give a run error print when tape switch 6 has been

specified.

6. Move Backward Statement:

BACKSPACE t

This statement causes tape t to be moved backward one "logi-

cal record". This is all of the data written by the WRITE (t) statement

52

that wrote the record for a binary tape, or is one line (or "car'l") *f

it is an alphanumeric tape. BRLESC I/II will give a run error print j.i

tape switch 6 or 8 has been specified.

7. Rewind Statement:

REWIND t

This statement causes tape t to be rewound without being un-

loaded. It may be executed on BRLESC I/II when the tape is already re-

wound, but should be avoided as it requires time. BRLESC I/II will

ignore this statement when tape switch 6 or 8 has been specified.

8. Read Cards Statement:

READ f, list

This nonstandard statement causes decimal and alphanumeric

data J--. he re 1 from a ds (or tape switch 6 on BRLF"C I/I! if the cards

have bee,-, pat on tape off-line and the proper console switch is up.)

If the list is omitted, at least one card will be read and ignored.

9. Punch Cards Statement:

PUNCH f, list

This nonstandard statement causes decimal and alphanumeric

data to be punched on cards (or actual tape switch 8 on BRLESC I/II if

the proper console switch is up). The BRLESC I/II tape output will be

"formatted" for the high speed printer by adding a 1 character at the

beginning of each "card" and an end-of-line character at the end of

each "card". The block length will be at least 1830 characters. All

80 columns of a card may be used on BRLESC I/II and for tape switch 8

output, the "card" may be up to 132 columns long.

10. Print Statement:

PRINT f, list

For some computers, this nonstandard statement means to print

the data on an on-line printer. Since BRLESC I does not have an on-

53

line printer, the data is put on ttpe switch 8 for off-line printing.

BRLESC II writes this data on tape switch 8 which, at the operators

discretion, may also be printed on an on-line printer. The maximum

line length for BRLESC I/II and for most computers is 132 characters.

The following description generally applies only for BRLESC

I/II. If the first character of a line comes from an H field, it will

be used for vertical space control (after a transformation) and not

printed. If the first character does not come from an H field, an extra

"1" character (single space) is inserted at the beginning of the line.

The end-of-line character is automatically inserted at the end of eacn

line. The tape writing is parity checked and there is checking for end

of reel. The tape block length is at least 1830 characters and this

allows about 15 million characters or 185,000 lines of 80 characters

each on a reel of 1/2'* tape.

For BRLESC I/II, a control card may be used to change all

PRINT statements to PUNCH statements.

Additional Notes on Input/Output Statements:

The f (FORMAT number or name) may be omitted in READ, PUNCH or

PRINT statements on BRLESC I/II and this will cause FORMAT (1P6E12.5)

to be used automatically.

The statement numbers 1 and 2 may be used on BRLESC I/II to auto-

matically specify FORMAT (5F14.5) and FORMAT (1P5E14.5) respectively

without including them as part of the program. If 1 or 2 or both are

used to refer to these formats, then that statement number must not be

used in that subprogram for any other purpose. If either one is used

as a statement number in a subprogram, then the corresponding automatic

format cannot be used.

The omission jf a "list" on any of the input statements will cause

at least one record (card, line, or logical binary tape record) to be

read and ignored on BRLESC I/II. More than one alphanumeric record may

be skipped if the format contains slashes before the first specifica-

54

tion chat requires a list element.

The number of print positions on ARDC printers is 132.

ADDITIONAL NOTES ON THE USAGE OF MAGNETIC TAPE ON BRLESC I/II:

All of the tapa reading and writing is parity checked. For one

inch tapes, rereading erroneously ten consecutive times or rewriting

wrong twice after each of five consecutive "GAP instructions" causes

an error print and DRLESC I stops running the program. For half inch

tapes, the unit halts the computer after sixteen unsuccessful rereads

or rewrites.

There is checking for end-of-reel only on BRLESC I half inch

tapes. At the end of a reel, BRLESC I halts at 080 and is ready to

accept a new reel when restarted. A single reel of 1/2" tape will hold

about 185,000 lines.

The only restriction on SWJcching between reading and writing of

tapes is that no reading can be done beyond the block thai: was last

written on a tape, i.e., after writing, a tape must be moved backward

before reading may occur. Whenever a tape on BRLESC I/II is switched

from writing to reading, a file mark and an extra one word block that

contains "END TAPE" is automatically written on the tape before the

final file mark is written and then switching is done. (This extra

block is ignored by a BACKSPACE statement.) BRLESC II can start

writing after the use of the nonstandard subroutine BACKFILE. BRLESC

I allows the use of BACKFILE, but will not properly start writing im-

mediately after its execution. BRLESC I will also erase the file mark

if writing begins after execution of the nonstandard subroutine

SKIPFILE whereas BRLESC II will properly keep the file mark.

All FORTRAN alphanumeric input and output tapes are "buffered"

and may contain up to 2000 characters per block, To accomplish this

buffering, each tape unit used requires the use of an extra 201 words

of BRLESC I/II memory. This space is assigned as it is needed while

55

the program is being executed and will not conflict with any other

memory assignment made in a normal FORTRAN program. Buffers are as-

signed backward from the subroutines provided space is-available there.

Otherwise they are assigned backward from the end of the memory. (For

"CHAIN jobs" on BRLESC I, they are assigned so as to not conflict with

any link of the CHAIN.)

FORTRAN programs are supposed to contain an END FILE statement and

a REWIND statement for each output tape used in the program and a RE-

WIND statement for each input tape. If this is not done within the pro-

gram, BRLESC I/II will rewind all tapes that were used but not rewound

by the program when the execution of the program has been completed.

Tape Unit Table.

The tape unit number t may be either a decimal integer constant or

integer variable. If t is a variable, the integer value it has at the

time the tape statement is executed is used as t. The following table

shows the correspondence between the value of t and the ^ap_e jsjwitch

number on BRLESC I/II. The actual physical tape handler used depends

on the switch setting.

t Switch

0 9

1 or 11 1

2 or 12 2

3 or 13 3

4 or 14 4

5 6 (Normal "card" input)

6 8 (Normal printer output)

7 10

8 11

9 12

10 7 (temporary or output only)

15 5

56

It is illegal to use both 1 and 11, or 2 and 12, or 3 and 13, or 4 and

14 within the same program. If t > 15 is used, it will be used modulo

16. PRINT (and PUNCH) tape output uses switch 8, the compiler itself

uses switch 14 or 15 for its own program and may use switch 7 for tempo-

rary storage while compiling, and card input that was put on tape off-

line uses switch 6. When leaving problems to be run on BRLESC I/II, the

switch number rather than the t number must be used in the instructions

to the computer operator.

Vertical Space_Control.

All printer output is formatted for variable length lines for the

off-line high speed printer. PUNCH tape output automatically has a

single space character inserted at the beginning of each line and an

end-of-line character at the end of each line. The same is true of

PRINT and WRITE (t, f) output if the first field of the line is not an

H type field. If the first field is an H field, then the first charac-

ter of the field is used by the printer for vertical space control

after undergoing the following transformation:

H_Fieid Tage

blank 1 (single space)

1 8 start new page

0 (zero) special blank line with 1 on next
line, (double space)

2 2 skip to even numbered line.
(nonstandard)

(possible double space)

8 8 (start new page) (nonstandard)

others 1 (single space) (nonstandard)

The vertical space control character is not printed and it causes the

spacing tc occur before the line is printed. A blank control character

should normally be used to obtain single spaced lines. Some computers

allow a + for no spacing, but this will cause single spacing on BRLESC

57

I/II. When reading previous FORTRAN alphanumeric output, a 1 vertical

space control character is transformed back to blank and the special

blank line is ignored but causes the 1 control character on the follow-

ing line to be transformed back to zero. The 8 vertical space control

character is not transformed back to 1, but note that the 8 will still

start a new page if it is used for output. The special blank line is

also ignored by the BACKSPACE statement.

XII. DECODE AND ENCODE STATEMENTS

ENCODE and DECODE are nonstandard statements that are allowed on

BRLESC I/II and a few other computers. These statements on BRLESC I/II

are generally compatible with CDC FORTRAN.

DECODE and ENCODE statements provide a means for performing I/O

conversions under format control without actually using an I/O unit.

The DECODE corresponds to normal input conversion except that it as-

sumes the alphanumeric characters are already in the memory, either by

a previous READ statement or by some other means. The ENCODE statement

corresponds to normal output conversion except it stores the resulting

alphanumeric characters in the memory instead of writing them on some

output unit.

1. DECODE Statement:

DECODE (icr, f, ac) list

where icr is the integer number of characters per record, f is a FORMAT

statement number or an array name, ac is a variable name, array name,

or array element name that specifies the initial position of the alpha-

numeric characters that are to be converted according to the format f

and the converted results are stored in the storage specified by the

list. The list may be any normal I/O list.

BRLESC I/II assume that each memory word starting at ac, con-

tains ten characters. However, the number of characters used from each

word may be changed by execution of the SETCWD(i) subroutine where i is

58

an integer less than or equal to ten that specifies the number of charac-

ters per memory word that will be used when subsequent DECODE statements

are executed.

If the format and list require more than one record (line),

the next record begins at the next memory word after icr characters,

even if not all of the icr characters have been used. For example, if

icr is 23 and there are 10 characters per memory position, then the

second record would begin using characters from the beginning of the

fourth memory word.

BRLESC I/II allow up to 160 characters to be decoded for each

record, even when icr is smaller. It uses blanks after the last memory

word that contains the icr characters. However, CDC does not allow

more than icr characters to be decoded per record.

Examples: DECODE (80,33,A)(B(I),I = 1,10)

DECODE (10,AF,E(3))X, J

2. ENCODE Statement:

ENCODE (icr, f, ac) list

where Icr is the integer number of characters per record, f is a FORMAT

statement number or an array name, ac is a variable name, array name, or

array element name that specifies the initial position for storing the

alphanumeric characters that result from converting the items on the

list according to the format f. The list may be any normal I/O list.

BRLESC I/II will store ten characters at each memory word

starting at ac and will always store at least icr characters. The num-

ber of characters stored per memory word may be changed by executing

the SETCWE(i) subroutine where i is an integer less than or equal to

ten that specifies the number of characters to be stored in each memory

word when subsequent ENCODE statements are executed.

59

If Che format and list specify less than icr characters in a

record, the record is filled out with blanks and a total of icr charac-

ters arc stored. If the format and list specify more than one record,

the next record begins at the beginning >f the next memory word after

icr characters.

BRLESC I./II will encode up to 160 characters but only stores

icr characters at ac plus any characters that will fit into the last

memory word of the record. However, CDC does not allow encoding more

than icr characters per record.

BRLESC I/II do not automatically insert any extra printer

vertical space control character at the beginning of a record when EN-

CODE statements are execute«.

Examples: ENCODE (132/16,P(1))W, MT, Kl, K2, F

ENCODE (50,241,H) Q,((G(I,J),J = 1,2), I = 1,3)

XIII. DATA STATEMENT

The DATA statement allows initial values to be stored for variables

without writing an executable formula. The DATA statement allows a list

of variable names to be followed by a list of the constants that should

be initially stored as the values of the variables. A slash is used to

separate a list of variables and a list of constants and commas are

used to separate items within both lists.

The general form of the DATA statement is

DATA vl,v2,v3,.../cl,c2,c3,.../,v4,v5,..,/c4,c5,lll/,...

where vl,v2,... represents names of variables and cl,c2,... represents

constants. The variable list on BRLESC I/II may contain DO-implying

parentheses with variable subscripts that take on specified integer

constants, but the standard does not allow this. All other subscripts

must be constant, i.e., the integer value of all subscripts must be

completely defined within the DATA statement. The name of an array may

be used without subscripts to specify a list of the entire array on

60

BRLESC I/II, but this i3 nonstandard. Dummy argument names are not

t1lowed in DATA statements.

The constant list may contain any standard FORTRAN constant and

may also contain octal constants on BRLESC I/II by preceding the octal

digits with th; letter 0. T and TRUE are also allowed for .TRUE, and

F and FALSE are also allowed for .FALSE, on BRLESC I/II. Any constant

may be repeated k times by preceding it with "k*" where k is the inte-

ger number of times that the constant should be repeated.

Most computers and the standard do not allow the DATA statement

to initialize a variable that is in blank COMMON; however this is

allowed on BRLESC I/II. Also most other computers and the standard

allow variables in labeled COMMON blocks to appear in DATA statements

only within a special BLOCK DATA subprogram.

Some examples of DATA statements are:

DATA A,B/5.3,.6E-3/

DATA I,LOGIC,0CT/14..FALSE.,07777/,ALFH/4HD0NE/

DATA(C(I),1=1,10)/5*1.0,3*2.0,2*3.0/

Note the absence of a comma after "DATA" but the presence of a

comma before the beginning of any other list of variable names in the

same statement.

There must be a one-to-one correspondence between the number of

variables that are to be given initial values and the number of con-

stants within any one DATA statement. BRLESC I/II gives an error print

when there is not a one-to-one correspondence.

DATA statements may appear anywhere within a main program or sub-

program except the standard and BRLESC II require that they must not

appear before the last specification statement.

To allow some compatibility with CDC FORTRAN, BRLESC I/II also

allows the CDC form of the DATA statement which has the general form

of:

61

I

DATA(vl = cl),(v2 = c2),...

where vl is one variable name or one array name or one subscripted

name, which may have DO-implying subscript information, and cl is one

constant or enough constants, separated by commas, to satisfy the re-

quirements for vl. Repetition of one or more constants k times is

allowed by "k(cl,c2,...)".

Some examples of CDC DATA statements are:

DATA(F=7.2),(X=.003)

DATA((B(J),J=1,5)=1.0,2(5.3,8.1)),(LA=.TRUE.)

XIV. SUBPROGRAM STATEMENTS

FORTRAN allows sections of a FORTRAN program to be designated as

subprograms that may be used at many different places in the main pro-

gram or in other subprograms. The SUBROUTINE, FUNCTION, RETURN, END,

and BLOCK DATA statements allow the programmer to define and name por-

tions of his program as subprograms and these statements provide

information that allows the compiler to provide for the substitution

of variables at execution time and to provide standard entry and exit

methods. Thtre are two kinds of executable subprograms, subroutines

and functions. A BLOCK DATA subprogram is nonexecutable.

Any subprogram may use any of the FORTRAN statements within itself

except SUBROUTINE, FUNCTION, and BLOCK DATA statements. Any executable

subprogram may use any other subprogram or subroutine of any type, in-

cluding statement functions (See Section XV) that are defined at the

beginning of that subprogram. Recursive subprograms (subprograms that

use themselves) are not allowed.

1. SUBROUTINE Statement:

SUBROUTINE a(b,c,d,e,...)

This statement marks the beginning of a subprogram that is

called a subroutine. The name of the subroutine is a and b,c,d,e,...

62

are the names of nonsubscripted dummy arguments that will be replaced

at execute time by the actual variables that are listed in the CALL

staterent that causes the subroutine to be executed. The subroutine

consists of the FORTRAN statements that follow this statement down to

an END statement. BRLESC I/II will also end a subprogram if it en-

counters a FUNCTION or another SUBROUTINE statement and do not require

the END statement.

The name of the subroutine does not indicate the type of any

result and hence any letter may be used as its first character.

Except for the common storage, all variables within a sub-

program are assigned storage that is unique and not used by any other

part of the program. Thus the variable X may be used in several

subprograms within a program and each X will be different unless it

appears in the same relative position in COMMON statements in each of

the subprograms.

Example: SUBROUTINE FOGO(A,XX, LEM2)

Dummy Arguments and Adjustable Dimensions;

No storage is assigned to dummy arguments; on BRLESC I/II,

DM will appear in the dictionary instead of a memory address. The type

of a dummy argument, as indicated by its fi^st ler.ter or within a type-

statement, must agree with the type of all aci:ual arguments that re-

place it.

If a dummy argument is not an array, then £.n associated actu-

al argument may be aither a simple variable or a subscripted array name

(which means that the subprogram will use just one element of an array

as though it were a simple variable). A nonarray dummy argument may

also be used within its subprogram as though it were a function name or

a subroutine name provided that any associated actual argument is a

function name or a subroutine name respectively.

63

If a dummy argument is an array, then any associated actual

argument must also be an array and may be subscripted except it may not

be subscripted on BRLESC I. The dummy and actual arguments must also

have the same number of dimensions on BRLESC I, but not on BRLESC II

or according to the standard. The dummy array need not be the same di-

mensions as the actual argument, but when the dimensions are not the

same, the normal association of elements with idertical subscripts may

not occur, i.e. the actual element A(2,2) is probably not associated

with the dummy element D(2,2). Within the subprogram, the dummy array

declarator is used to reference the actual array and if any subscripts

other than the rightmost one are different between the dummy and actual

declarators, the same subscript does not reference the same array ele-

ment in both the calling program and the subprogram. Therefore, agree-

ment of the declared dimensions between actual and dummy arrays is

usually desirable and often necessary for correct interpretation of the

program.

Array declarators in subprograms may use integer variable

names if they are dummy arguments and if the array is also a dummy argu-

ment. This feature is referred to as adjustable dimensions and it allows

the calling program to supply dimension information that allows proper

referencing of actual arrays of different dimensions. The values of

the adjustable dimensions cannot be changed within the subprogram.

The standard does not allow dummy argument arrays to be de-

clared with more array elements than are in an associated actual argu-

ment and also does not allow referencing more array elements than

declared in the dummy argument array declarator. Therefore, if all ele-

ments of the actual argument are to be referenced, the dummy and actual

argument array declarators must declare the same number of elements.

However very few computers actually enforce either of these standard

restrictions.

64

-
■

The following examples illustrate the associations between

elements of an actual argument array A and a dummy argument array D:

Array Declarators: A(2,2) and D(2,2)

Actual Argument : A or A(1,1)

A(l,l) ~ D(l,l)

A(2,l) ~ D(2,l)

A(l,2) - D(l,2)

A(2,2) M D(2,2)

Array Declarators: A(3,2) and D(2,3)

Actual Argument ; A or A(l,l)

A(l,l) ~ D(l.l)

A(2,l) D(2,l)

A(3,l) ... D(l,2)

A(l,2) ... D(2,2)

A(2,2) ~ D(l,3)

A(3,2) ~ D(2,3)

Array Declarators: A(2,3) and D(3)

Actual Argument ; A(2,l)

A(2,l) „ D(l)

A(3,l) ~ D(2)

A(l,2) « D(3)

2. FUNCTION Statement:

FUNCTION a(b,c,d,...)

This statement is similar to the SUBROUTINE statement but

should be used whenever the subprogram has only one result. No dummy

argument should be listed for the result as it is intended that the

function will be used in an arithmetic (or logical) expression and the

result is simply used in evaluating the rest of the expression.

65

The name of the function is a and b,c,d,... represent non-

subscripted dummy arguments. The name of the function indicates the

type of the result by its first letter or the type of the result may

be declared before the word FUNCTION, e.g., REAL FUNCTION, LOGICAL

FUNCTION, etc., and it may not appear in a type-statement cr any other

specification statement. The type of other dummy arguments can be

specified in type-statements within the subprogram. On BRLESC I, the

name of the function must not end with F if it consists of more than

three characters and does not begin with I, J, K, L, M, or N.

Within the FUNCTION subprogram, some statement should store

a value in a variable that has the same name as the name of the function

and this will be used as the result.

There must always be at least one dummy argument for FUNC 'TON

subprograms.

Examples: FUNCTION LOW(Ql.T)

LOGICAL FUNCTION FOUND (L,V,N)

3. RETURN Statement:

RETURN

This statement may be used as often as desired within sub-

programs to indicate the point or points at which execution of the sub-

program should stop and control should return to the program that is

using the subprogram. It should always be used at least once in every

subprogram.

4. END Statement:

END

This statement should be used at the end of all subprograms

and at the end of the main program. It is not required on BRLESC I/II.

All program decks on BRLESC I/II do require the very last card of the

entire program deck to be a card that has an E in column 1 or an * in

66

column 1 with "DATA" in the statement field.

For BRLESC I/II, the main program and all the subprograms

must be compiled at the same time and execution automatically begins

after compilation if no errors have been detected during compilation.

BRLESC I has a limit of 60 subprograms used in any one program deck

and BRLESC II has a limit of 255 subprograms.

5. ENTRY Statement:

ENTRY a(b,c,d,e,...)

The purpose of this statement is to allow multiple entry

points within subprograms. It is not a standard FORTRAN statement,

but some form of it is allowed in a number of FORTRAN IV compilers.

The following description applies only to BRLESC I/II and is not com-

pletely compatible with any other computer.

The name of the entry point is a and b,c,d,e,... are the

n'imes of nonsubscripted dummy arguments. The name of the entry point

a is used in a CALL statement for ENTRY statements in subroutine sub-

programs and is used in arithmetic expressions for ENTRY statements in

function subprograms.

The dummy arguments in an ENTRY statement do not have to be

the same as those in the SUBROUTINE or FUNCTION statement for the sub^

program in which the ENTRY statement appears. However, a dummy argu-

ment may not appear in any statement (including DIMENSION) unless it

has previously been declared to be a dummy argument by appearing in a

SUBROUTINE, FUNCTION or ENTRY statement. The ENTRY statement must also

physically precede all of the appearances of any of the dummy arguments

that will actually be used in executable statements for that entry to

the subprogram. (This is the only essential difference between

7090/7094 and BRLESC I/II ENTRY statements. 7090/7094 allow dummy ar-

guments to be used both before and after the ENTRY statement.)

67

>

The name of the result in a function subprogram cannot be an

entry name. Only the name appearing in the FUNCTION statement is allow-

ed as the name of the result.

ENTRY statements are nonexecutable and normal control may

pass through them without doing the initializing of the arguments for

that entry.

BRLESC I/II has a limit of 100 dummy arguments and entry

names in ENTRY statements within one subprogram.

CDC FORTRAN allows ENTRY statements without dummy arguments.

It uses the original dummy arguments automatically with each entry.

Example: ENTRY TRY2(V,R)

6. BLOCK DATA Statement:

BLOCK DATA

This statement is used to begin a specification subprogram

that allows the DATA statement to store constants into variables that

are in labeled common blocks. This subprogram must not contain any

executable statements. It must contain one or more COMMON statements

that list all of the names that are in any of the labeled COMMON blocks

that is to receive constants from a DATA ? atement. It is not permissi-

ble on most computers for any DATA statement to store into a blank

COMMON variable; however this nonstandard feature is allowed on BRLESC

I/II.

The use of BLOCK DATA subprograms is not necessary on BRLESC

I/II but it should be used to maintain compatibility with other compu-

ters. BLOCKD will be used as the name of the BLOCK DATA subprogram in

a BRLESC I/II dictionary.

•

68

r ^'^l*&*■■is*?r^l6JWJI*tämg&il 1?

Example: BLOCK DATA

DIMENSION A(6)

LOGICAL LA

COMMON/B1/R,A/B2/V,LA

DATA LA,A/.TRUE.,6*1.0/

END

XV. PREDEFINED FUNCTIONS AND STATEMENT FUNCTIONS

FORTRAN subroutines are separated into two classes, (1) functions

are those routines that have only one rasulL and hence may be used in

arithmetical (or logical) expressions; ard (2) SUBROUTINE subprograms

(See Section XIV) or other subroutines that may have more than one num-

ber as a result and may be used only by CALL statements,

Functions

There are three methods of defining a function. They are

1. Predefined functions that may be used simply by using the

predefined name.

2. Statement functions.

3. FUNCTION subprograms. (See Section XIV)

Predefined Functions

Appendix A lists the predefined functions that are allowed on

BRLESC I/II and most computers. Both the FORTRAN II and IV names are

listed for each function and either name is allowed on BRLESC I/II.

The standard name is the same as the FORTRAN IV name for those functions

that are predefined by the standard.

Additional function subprograms are available from the Systems

Programming Branch in the form of card decks.

69

"

Naming Functions

For FORTRAN IV and standard FORTRAN, all function names indicate

the type of result in the same meaner as other variable names, i.e.,

either the initial letter determines the type or the type is declared

in a type-statement or FUNCTION statement. It is best to avoid using

function names that end with F when they have more than three charac-

ters. See the description of the FUNCTION statement (Section XIV) and

the description of statement functions in this section for BRLESC I/II

restrictions on the use of such names. These restrictions arise because

of the incompatible naming conventions between FORTRAN II and IV and the

desire to allow most FORTRAN II and IV programs to execute properly on

BRLESC I/II.

For FORTRAN II, predefined function (and statement function) names

must always end with F (a total of seven characters are allowed) and

must begin with X only if the result is an integer. BRLESC II will also

use statement function names that begin with I-N as of type integer.

Variables must never be given a name that is the same as any of the

function or subroutine names either with or without the terminal F.

For BRLESC I/II, the terminal F is not necessary when the initial letter

of the predefined function name indicates the proper type of result but

is necessary in both the definition and use of arithmetic statement

functions whenever it appears either place.

Use of Functions

Any of the three types of functions may be used in an arithmetic

expression by writing its name in front of a pair of parentheses that

enclose the list of arguments. The arguments must correspond in type,

order, and number to the dummy arguments used in defining the function.

Successive arguments are separated by commas and they may be arithmetic

expressions.

70

For BRLESC I/II, any function may also be used in a CALL statement

by adding one extra actual argument that specifies where to store the

result.

Statement Functions

Statement functions are functions that can be and are defined by

one statement at the beginning of a main program or subprogram. The

name of the function followed by the dummy arguments enclosed in pa-

rentheses are written to the left of the = symbol. The expression that

describes the function in terms of the dummy arguments is written to the

right of the = symbol. The dummy arguments cannot be subscripted. Any

variable used in the expression that is not a dummy argument will be

identical to the variable of the same name in the main program or sub-

program in which the statement is contained. A statement function

definition normally can be used only in the program or subprogram in

which it is located, however BRLESC I allows them to be used anywhere

within the complete program.

A statement function may use any of the other types of functions

and may also use other previously defined statement functions. All

statement functions must precede the first statement that gets executed

in the program or subprogram.

If the statement function name does not indicate the proper type

of result, then its name must appear in a type-statement. When a state-

ment function name appears in a type-statement on BRLESC I, it must also

be put in an EXTERNAL statement that appears after the type-statement

and this pair of statements must appear in every subprogram that uses

the statement function. On BRLESC I, the name of a function must not

end with F if it consists of more than three characters and does not

begin with I-N. On BRLESC I/II, statement function names that have more

than three characters, end with F, and begin with X will be used as

integer unless declared a different type in a type-statement. On

BRLESC I, statement function names that have more than three characters,

71

'

end with F, and begin with I-N will be used as real unless declared a

different type in a type-statement.

The dummy argument names must indicate the same type of arithmetic

that is required when the function is actually used. When the initial

letter of a dumr argument does not indicate the proper type, it may

appear in a type-statement before the statement function. When this is

done, the BRIESC I dictionary will not have the variable marked as a

dummy argument, but the program will be correct.

A statement function may be any kind of assignment statement, i.e.,

it may be arithmetic, logical or a nonstandard masking statement.

Example of defining an arithmetic statement function:

FUN(A,B,C) = A**2 - SIN(B*C)+C

Example of using this arithmetic statement function:

T = Q + FUN(X,S + EXP(V**2),14.)

XVI. PREDEFINED SUBROUTINES

A subroutine may be predefined and supplied by the compiler or it

may be defined by a subroutine subprogram. (See Section XIV.) Subrou-

tines may be given any valid name (no restrictions on the first or last

letter) and may only be used by a CALL statement.

There are no subroutines predefined by tha standard. The follow-

ing subroutines are predefined in BRLESC I/II FORTRAN:

Set minus sign for input.

Set plus sign for input. (Not necessary,

anything not minus is plus.)

Set minus sign for output.

Set plus sign for output.

SETMSI (j)

SETPSI (j)

SETMSO (j)

SETPSO (j)

72

where j is an integer constant:

0 means blank.

1 meens y (12) punch.

2 means x (11) punch.

3 means x or y punch.

SEXAPR(a,b)

BINPUT

Sexadecimal print from the address of a to the

address of b.

Goes to binary input routine after saving a

return jump instruction (in 073 on BRLESC I and

007 on BRLESC II).

POWERS(a,b,c) Computes c = a**b where b may be integer

or real.

SINCOS(a,b,c) Computes b = SIN(a) and c - COS(a).

CHTAPE(u,t) Change FORTRAN I/O unit u to use BRLESC I/II

tape switch t. (u and t must be integers.)

This should only be executed before any I/O

has occurred on unit u.

MATMPY(a,b,c,i,j,k,im,jm,km)

Multiply matrices; c(i,k) » a(i,j) * b(j,k)

where im,jm,and km must be the declared maxi-

mum row dimensions of a,b, and c respectively.

Plot routines for Calcomp plotter.

A separate ARDC Technical Note describes the

argument lists and provides detailed informa-

tion on using these plotting routines.

PLTCCA

PLTCCB

PLTCCD

PLTCCE

PLTCCP

PLTCCS

PLTCCT

FIXSCA

CONSCA

73

!

i

CKCLK(t.s)

or
CKCLK(t)

RDCLK(r) Read clock into r (alphanumeric characters).

STCLKS(rl,r2,d) Subtract clock readings (r2-rl) and store

difference in minutes in d as a real number.

If rl is a blank argument, the start-time (of

compilation) is ujed. If r2 is a blank argu-

ment, the current time is used.

CVCLK(r,m) Convert clock reading r into minutes since

previous midnight and store in m as a real

number. If r is a blank argument, the current

clock reading is used.

If total (compile + execute) BRLESC I/II time

is greater than t real minutes, do statement

s next. (Statement number s must have an S

after it.) When s is omitted, it is equivalent

to specifying a STOP statement.

UNPACK(a,b,n) Unpack n characters from ten characters per

word beginning at a to one right adjusted

character per word beginning at b. On BRLESC

I, a and b must have subscripts if they are

arrays. If n = 0, the subroutine does nothing.

PACK(a,b,n) Pack n characters from one right adjusted

character per word beginning at a into ten

characters per word beginning at b. On BRLESC

I, a and b must have subscripts if they are

arrays. If n = 0, the subroutine does nothing.

SETREB Sets I/O routine to also allow a blank column

to start an exponent in input numbers.

SETCWD(i) Sets so the DECODE statements will decode i

characters per word, (integer i £ 10)

SETCWE(i) Sets so the ENCODE statements will encode i

characters per word, (integer i s 10)

74

 —' ■■"•■

-

or
BACKFILE(u)

SKIPFILE(u,n) Moves FORTRAN tape u forward n file marks if it

eirTDBTTw \ is 1/2" tape. When n is omitted or if the tape oKIrr JLLt. (u)
is 1", the tape moves forward only to the next

file mark. On BRLESC I, n ■ 0 is the same as

n = 1. Only input tapes may be specified and

not tape switch 6 which is usually FORTRAN unit

5. The next READ (or WRITE) statement will be-

gin with the information after the file mark ex-

cept BRLESC I will erase the file mark if the

next statement is WRITE.

BACKFILE(u,n) Moves FORTRAN tape u backward n file marks if

it is 1/2" tape. When n is omitted or if the

tape is 1", the tape moves backward only to the

next file mark. On BRLESC I, n = 0 is the same

as n = 1. Either input or output tapes can be

specified, but not BRLESC tape switches 6 or 8.

The next READ statement will begin with the in-

formation after the file mark, the next WRITE

will erase the file mark except BRLESC I erases

the previous block of information too. (Note:

BRLESC II properly does BACKFILE & SKIPFILE

including the situation when it has read a

block ahead. BRLESC I does not properly start

writing immediately after doing BACKFILE or

SKIPFILE.)

BRLESC II only. Calls the FORTRAN compiler to

begin compilation of another program, which may

be either a FORTRAN or FORAST program. A PROB

card (PROB in cols. 7-10) must immediately pre-

cede the next program. This subroutine allows

two or more programs to be run consecutively,

but submitLed as one program deck.

FORTRAN

75

Additional predefined subroutines may be added in the future and ad-

ditional subroutines in the form of card decks are available from the

Systems Programming Branch.

XVII. FORTRAN PROGRAM CARDS

BR1ESC I/II use the standard card format for punching FORTRAN pro-

grams.

Columns:

1-5

6

7 - 72

73 - 80

Statement number (integer).

Continuation Card if not zero or blank.

One FORTRAN statement. (BRLESC I/II allow more

than one.)

Identification.

The statement number must be a decimal integer. Leading zero.?

and all blank columns are ignored. On BRLESC I/II, if a statement num-

ber is the same as the last nonblank statement number field, it is ig-

nored .

Column 1 is also used to indicate special types of cards. The

following list shows the special characters that indicate special cards:

C Comment card. Columns 2-80 may be used for comments.

* BRLESC I/II control card.

B Boolean statement card. (FORTRAN II, not allowed on

BRLESC II)

D Double Precision statement card. (FORTRAN II, not

allowed on BRLESC II)

I Complex Arithmetic statement card. (Not allowed on

BRLESC I/II)

F Used to specify names of subroutines and functions used

as arguments. (FORTRAN II, not allowed on BRLESC II)

$ BRLESC I assembly order cards and BRLESC I/II MAXT and

MAXO control cards.

76

-—■* ~~"~

BRI£SC II assembly order cards. Ignored by BRIESC I.

7-3 End-file signal on 7090/7094, control card signal on

1108, ignored on BRLESC I/II.

E BRLESC I/II, is last card of program deck.

X BRLESC I will use FORTRAN statements from this card

and BRLESC II will ignore this card.

Y BRLESC I will ignore this card and BRLESC II will use

FORTRAN statements from this card.

/ Job control cards on 360 computers, ignored on BRLESC

I/II.

All of these special column 1 indicators are nonstandard except the C

in column 1 for comment cards.

Column 6 is used to mark cards that are a continuation of the

previous card. It is used as a continuation if column 6 contains any

character other than zero or blank except on the initial BRLESC I/II

identification control card and all comment cards. BRLESC I/II does

not limit the number of continuation cards allowed for one statement

but the standard prescribes a limit of nineteen.

Columns 7-72 contains information, one or more statements, com-

coments, control information, etc. depending on the type of cards as

indicated by Column 1. SRLESC I/II will allow more than one statement

per card if the symbol $ is used to separate the statements. A special

program is available for compacting and repunching a FORTRAN program so

that it will have more than one statement per card and another program

is available for repunching the compacted version with one statement

per card.

Columns 73-80 are ignored and may contain any desired identifica-

tion, card number, etc.

Blank columns are ignored except when they are in hollerith infor-

mation in a FORMAT statement or within alphanumeric constants.

77

Blank cards will be ignored on BRLESC I/II, but the standard does

not permit "empty statements" which are usually caused by blank cards.

F Cards (FORTRAN II, not BRLESC II)

If the name of a subroutine or function, either predefined or de-

fined by a subprogram, is used as an argument for another subroutine or

function, its name, usually without the terminal F, must appear on a

card with an F in Column 1 or in a standard EXTERNAL statement. The F

card or EXTERNAL statement must be in the program or subprogram that

uses the subroutine or function as an argument and the F card may be

anywhere within that program or subprogram.

The names of the subroutines and functions are to start in or be-

yond Column 7 and are separated by commas.

Example: F SIN, EXP, FUN3, ATAN

On 3RLESC I, the terminal F is to be omitted from those function

names that have an initial letter that indicates the proper type of

result according to the I-N rules. It must be retained on those names

that do not indicate the proper type of result, e.g., LOGF, MAXOF.

This same rule for the terminal F applies where the name is used as an

argument for a subprogram. When programming a subprogram to accept a

function name as an argument, the dummy argument should end with F only

if the initial character does not indicate the proper type of result.

If a final F is used with at least three other characters, then the re-

sult type is integer only if the name begins with X.

For FORTRAN IV and standard FORTRAN, the EXTERNAL statement re-

places the F card and serves the same purpose.

B Cards (FORTRAN II, not BRLESC 77,)

Cards with B in column 1 contain boolean statements where + means

the inclusive or operation, * means the and operation, and - means the

not operation. Integer constants are octal constants on these cards.

78

BRLESC I performs these boolean operations on the rightmost b5 bits of

a word and sets the other 3 bits to zero.

D Cards (FORTRAN II, not BRLESC II)

Cards with D in column 1 indicate that the statements on such

cards are to be executed with double precision arithmetic. BRLESC I

allows such cards, but executes the statements in single precision

(about 16 decimal digits).

Statement Arrangement

On BRLESC I/II, all of the statements for the main program must

physically be before the subprograms. The subprograms may be in any

order, but no subprogram may contain any statements that are a part

of another subprogram. BRLESC I allows a total of 60 subprograms,

BRLESC II allows 255 subprograms.

Within each main program or subprogram, there are a few restric-

tions on the physical arrangement of statements. The following diagram

shows that (1) FORMAT statements may appear essentially anywhere (2)

all specification statements must appear before all DATA statements,

statement function definition statements, and executable statements

(3) DATA statements may appear interspersed with statement functions

and executable statements (4) all statement function definitions must

appear before all executable statements (5) the first statement must be

a FUNCTION, SUBROUTINE, or BLOCK DATA statement if it is not a main pro-

gram and (6) the last statement must be an END statement. This arrange-

ment is standard and is necessary on BRLESC II.

79

FUNCTION, SUBROUTINE, or BLOCK DATA Statement

(if not a main program)

FORMAT

STATEMENTS

Specification Statements

•
DATA

Rf-iat-0Tnnn(-a

Statement Function

Definitions

1
1
1

Executable Statements

END Statement

Physical Arrangement of Statements

BRLESC I has a further restriction that when the same name appears

in DIMENSION, COMMON and EQUIVALENCE statements, or in any two of these

statements, the statements involved must appear in the order o; DIMEN-

SION, COMMON, and then EQUIVALENCE within the specification statements.

Actually, BRLESC I does not require that all of the specification state-

ments appear before the statement factions and executable statements.

It does require thst. the first appearance of an array name be its array

declaration and any type-statement must appear before the names appear

in an arithmetic expression.

XVIII. BRLESC I/II CONTROL CARDS AND DICTIONARY PRINTING

The use of certain control cards are allowed to affect the compi-

lation of FORTRAN programs. Most of these apply to BRLESC I/II only,

although some are also used on other computers. All of the BRLESC I/II

control cards are marked with an * in Column 1 with the control informa-

80

~

'

tion starting in or after Column 7.

* The first card of a program that has an * in Column 1

is used as identification and is printed in front of the nor-

mal output. Columns 2-80 may be used. (On all other cards

with * in Column 1, only Columns 7-72 may be used.) The
j

first thing after the * should be the official problem num-
i

ber followed by a blank column or comma and this should not

extend beyond column 20. This card should also contain the

programmer's name, phone number, and building number.

UP 1

DOWNJ

This control card allows sense switch i to be "preset"

either UP or DOWN. By using this control card, the operator

can be relieved of actually setting the sense switches.

PRTOPU

SETSSW i <

This control card causes the compiler to translate all

following PRINT statements as though they were PUNCH Ptate-

ments. (Allows card output instead of tape.) Note that

vertical space control characters that are explicitly in a

FORMAT statement will be printed when PUNCH statement output

is listed.

* RTTORC

This control card causes the compiler to translate all

following READ INPUT TAPE, INPUT or READ(t,f) statements as

though they were READ statements. (Use card input instead of

tape.)

* WTTOPU

This control card causes the compiler to translate all

following WRITE OUTPUT TAPE, OUTPUT or WRITE(t,f) statements

as though they were PUNCH statements.

81

WTTOPR

This control card causes the compiler to translate all

following WRITE OUTPUT TAPE, OUTPUT or WRITE(t,f) statements

as though they were PRINT statements.

MVPRTO(sexa. add.)

This control card may be used (usually before the first

executable statement) to move the program to the specified

sexadecimal address.

SUBR(sub. name = sexa. add.)

This control card allows any specified predefined sub-

routine (or function) to be stored at the specified sexadeci-

mal address.

The above two control cards are needed when the space

allowed for storing predefined functions and subroutines is

exceeded as indicated by error print 73. This usually occurs

only when the plotting subroutine PLTCCB is used since it is

very large. In that case, the following two control cards

should be used before the first executable statement in the

main program:

* MVPRTO(OIKOO)

* SUBR(PLTCCB = 01400)

BIG CLEAR

This control card will cause BRLESC II to initialize

all uninitialized variables to a large number instead of the

normal zero. It m»y appear essentially anywhere within a

program and uses the sexadecimal constant 0LZ1LLLL to

initialize variables. Standard programs must not assume

that variables have a value of zero initially and this

control card assists in determining if all variables are

given values by the program before they are used to compute

82

*

*

*

other quantities. BRLESC I will ignore this control card,

/0 = 0

This control card causes BRLESC II to print an error

print each time a real division by zero is attempted. It

also causes the result of the division to be zero and allows

the program to continue running. It causes a subroutine to

be used to perform all real divisions and therefore increases

the length and execution time of the program. The form of

the error print is:

/0 = 0 AT a b/d

where a is one more than the sexadecimal address at which

the division by zero occurred, b is the numerator and d is

the divisor which should be zero.

COMPILE TAPE TO

COMPILE TAPE THRU

SKIP TAPE THRU

See Section XXIII for explanation of these three con-

trol cards that are used when compiling from tape 12.

MEMORY il,i2,i3

This control card permits a limited reassignment of

storage space within the BRLESC II compiler. It is ignored

on BRLESC I. It may allow a program to be run that previous-

ly caused compile error prints of number 19, 63, or 82. The

il, i2, and i3 are integer constants that normally have val-

ues of 3072, 4096 and 2048 respectively.

il Maximum number of names allowed in the

dictionary.

83

12 Maximum number of words in the second part of

the dictionary. One word is required for each

name plus at least 10% for other storage assign-

ments.

13 Maximum number of words reserved for keeping in-

formation that was in DATA statements. One word

is required for each constant and about one word

for each name.

The following restrictions must be satisfied:

il + i2 < Memory Size - 25000

13 < 3500

where "Memory Size" is 32768, 49152, 65536, or 81920 depending on the

amount of memory requested on the program cover card.

* LIST

* SYMBOL TABLE

Either of these causes the storage dictionary to be

printed. The asterisk in Column 1 is not required on the

LIST card.

The dictionary is printed with names of variables

arranged in alphabetical order within each subprogram.

Function and subroutine names will be preceded by two aster-

isks and will appear at the very beginning of the dictionary.

BRLESC II changes FORTRAN II predefined function names to

their FORTRAN IV and standard equivalent before inserting

them in the dictionary and inserts a blank character at the

beginning of the names of standard "intrinsic functions".

On BRLESC I, main program names will be preceded only by two

blanks and subprogram names will be preceded by one character

and one asterisk or period. The character preceding each

subprogram name will be 1,2,...,9,A,B,...T corresponding to

84

■"'

the sequence in which the subprograms appeared in the program

deck. The name of each subprogram will appear on a separate

line before the dictionary for that subprogram. If more than

30 subprograms are used on BRLESC I, some dictionaries for

two subprograms will be mixed together with both subprogram

names preceding that section of the complete dictionary.

When this occurs, those names preceded with an asterisk are

from the subprogram whose name appears on the left side of

the subprogram name card and those names preceded with a peri-

od are from the subprogram whose name appears on the right.

BRLESC II prints the dictionary for every subprogram separate-

ly and does not precede each name with any special characters.

It prints the number of each subprogram on the line that con-

tains the name of the subprogram. The subprogram dictionaries

appear in the same physical order that the subprograms appear

in the program.

Following each name will be the sexadecimal memory

address that has been assigned to the name. Following this

address, any of the following letters may appear:

A indicates an array name.

I indicates an integer variable.

L indicates a logical variable.

C indicates the name was in a COMMON statement.

E indicates the name was in an EQUIVALENCE statement.

U indicates the name was used only once. (BRLESC II

precedes the U with the absolute card number on

which the symbol appeared, if it was not in a

specification statement.

indicates a name was in a REAL statement. (BRLESC II)

indicates a double precision variable. (BRLESC II)

Appears after a statement number when that statement

begins in the right half of a word. (BRLESC II)

85

Statement numbers are printed at the right end of the

six character name position and therefore always precede the

names of the variables in any subprogram. The BRLESC I com-

piler usually adds a few names to the dictionary to indicate

temporary storage and special subroutines. The name $SUBS.

is printed usually at the end of the dictionary to indicate

the storage required by the predefined subroutines. The pre-

defined subroutines extend from this address down through

0103L and includes all of the input/output routines and sub-

routines. The $N06. nairv is printed usually as the next to

last name in the dictionary and indicates the length of the

"constant pool". This storage, from OSO (0F0 on BRLESC II)

down to but not including the address printed after $NOS.,

is used to store the constants and the "array words" (BRLESC

II does not use array words) required by the program. The

$LAST entry printed with the dictionary indicates the largest

address used by the program with the possible exception of

some tape buffers at the end of the memory.

For array names, the address printed in the dictionary

is the initial address of the array.

The names of all the common variables used within a

subprogram may not appear in the dictionary for that subpro-

gram. When the COMMON statements of a subprogram are pro-

cessed, a check is made to determine if the names and required

storage are the same as those for the main program. All of

the names up to the point of the first disagreement in name or

storage are deleted from the BRLESC I subprogram dictionary.

BRLESC II keeps all the names if there is any disagreement

and deletes all the names when they agree. If the subprogram

common statements are identical to the main common statements,

then the words MAIN COMMON are printed preceding the subpro-

gram dictionary. If the first common name of the subprogram

86

*

*

disagrees with the first common name of the main program,

then the check and deletion explained above is made with the

common statements of the previous subprogram.

If the subprogram common statements are identical to the

previous subprogram common statements, then the name of the

previous subprogram followed by "COMMON" is printed pre-

ceding the subprogram dictionary on BRLESC I an.1 BRLESC II

prints "PREVIOUS COMMON".

Names in blank common are assigned last, so the last name in

the blank common assignment within the subprogram that has

the most total (blank and labeled) common storage will mark

the end of all the storage used by the program. The instruc-

tions for the program and all the subprograms are stored

first, then all the variables not in common and not assigned

before the predefined subroutines are assigned storage im-

mediately after the instructions and this is followed by

those variables in labeled common, with the blank common

assigned last.

LIST8

LIST (S.CODE)

Either of these control cards causes the dictionary

and the sexadecimal code for the entire program to be printed.

Four instructions are printed on a line with the address of

the first one printed at the beginning of the line. The * in

Column 1 of LIST (S.CODE) may be omitted unless LIST is the

name of an array.

LIST (B.CODE)

On BRLESC I, this control card causes the entire pro-

gram and the subroutines it uses to be punched on binary

cards with absolute addresses. To use this binary deck to

run the program, it must be preceded by a binary input rou-

87
'

*

1

tine and followed by the standard set of FORTRAN input/output

routines and a jump to 073. The use of binary decks is not

recommended because BRLESC I can probably compile the FORTRAN

program from tape faster than reading the equivalent binaiy

cards. The * in column 1 may be omitted unless LIST is the

name of an array. On BRLESC II, this card is the same as the

LIST (S.CODE) control card.

LIST (START)

This control card may be inserted anywhere after the

identification card to cause the following source program

cards to be printed on the normal output unit. This card is

ignored if inserted before the identification card. It is

effective until a LIST (STOP) control card or the end of the

program is encountered. It does not cause a dictionary to

be printed. The * in column 1 may be omitted if LIST is not

an array name. Each LIST (START) card causes the following

statements to start printing at the beginning of a new page.

LIST (STOP)

This card causes the compiler to stop printing the

source program cards. It only has meaning when it has been

preceded with a LIST (START) control card. Note that pairs

cf LIST (START) and LIST (STOP) cards can be used to print

any selected portions of a program although it is not requir-

ed that they appear in pairs. This card does not cause a

dictionary to be printed. The * in column 1 may be omitted

if LKT is not an array name.

88

XIX. BRLESC I/II ASSEMBLY ORDERS

BRLESC I Assembly Language

BRLESC I allows BRLESC I assembly orders to be written on cards

that have a $ in column 1. The same general form as used in FORAST is

allowed, but not the special pror .ssing of addresses, formulas, etc.

FORTRAN statements must not be put on the same card with assembly or-

ders, but more than one assembly order may be put in columns 7-72 by

separating them with a $ symbol. The general form of each order is

like FORAST, i.e., OT(A)B)C$ where "(" after ")" is optional, the last

")" and the last $ are optional and less than three addresses is per-

mitted. Comments may follow $$.

For BRLESC I assembly orders:

Col. 1 $

Cols. 2-5 Blank, statement number or symbolic name is

allowed. Successive duplicate numbers or

names are not allowed.

Col. 6 Normal FORTRAN continuation column. ($ in

col. 1 not required on continuation cards.)

Cols. 7-72 One or more BRLESC I assembly orders.

Cols. 73-80 Identification only.

The following symbolic order types are the only ones allowed:

A B SET J- JC MI

S CB SI TAPE NOP IM

M CEQ INC CARD RSW RCL

D CNB II ZERO MMF

C CNEQ LP SIJ LPI

SQRT PMA J IIJ MMB

SHX IT JS EA JNA

TP HALT J+ JA JNC

See Appendix C for a brief description of these BRLESC I orders.

89

: i

i

Any of the symbolic parameters X, F, A or +, V, and R may be

written after any arithmetic order type (i.e., A, S, M, D, C, SQRT, SH,

and PM) without punctuation and in any sequence. Note that SH must

always have an X parameter and PM must always have an A parameter. The

C order type may also be written C-. These parameters have the follow-

ing meanings:

X means fixed point fractional arithmetic.

F means floating point arithmetic.

A or + means to accumulate the result in C.

V means use absolute value of both operands.

R means use the "R register".

A decimal parameter is also allowed. All arithmetic orders are

floating point unless the X parameter is used.

A GOTO statement with one address is allowed but none of the other

general FORAST statements are allowed.

No assembly order may have more than three addresses including

SET and INC and they cannot include a GOTO. However any of the orders

that set or increase index registers may be written with an = like

FORAST allows, e.g., SET(I=3)$. Index registers cannot be increased by

a negative amount.

A comma is used to indicate indexing in the same manner as FORAST.

Constant increments (and decrements on symbolic addresses) are allowed.

All index addresses must be absolute, decimal or sexadecimal. Address-

es 13-27(0J-01S) and 48-55(030-037) are not normally used in FORTRAN

compiled programs. Dummy arguments must never be indexed and variables

that might be assigned to a "large address" (addresses greatar than

sexadecimal 03LLL) must not be indexed. Large addresses may be used

anywhere as long as they are not indexed. (BRLESC I allows large ad-

dressing by using indexing automatically on all large addresses.)

90

FORTRAN array subscripting is not allowed in any BRIESC I assem-

bly orders. When an array name is used by itself, it references the

"array word", not the first element of the array.

Decimal addresses are allowed and sexadecimal addresses must have

a leading zero. Statement numbers used for an address must either be

preceded by "S/" or followed by an S. Decimal and hollerith constants

must be preceded by an * and may be either a FORTRAN integer, floating

point, or hollerith constant. Fixed point fractions are not allowed.

Sexadecimal constants may be written following a leading "/" and may

use M,A and Z, i.e., M = LLLLL, A = 00000, and Z represents enough

zeros to fill out a word of 17 sexadecimals.

There is no special processing of any addresses like there is in

FORAST for ß of SH,JA,JNA,JC,JNC and y of I/O orders. These addresses

should normally be written in sexadecimal.

Names of subroutines may be used as an address only by preceding

each one with "F/" or including each one in an EXTERNAL statement or

on an "F card".

Decimal increments and decrements are allowed on symbolic address-

es and may be written either before or after the index name, e.g.,

A+2,14 or A,14+2. SELF is also allowed to refer to an order's own ad-

dress .

Symbolic names may be assigned absolute addresses by using a SYN

statement on a $ card. SYN may be followed by any number of pairs of

parentheses that enclose one symbolic address and one absolute address

separated by "=". An example is:

$ SYN(A=080)BT=942)(OLOO=Zl)$

Note that "("after")" is optional and that $ at the end indicates that

the rest of this card will not be used.

A group of sexadecimal or decimal constants may be stored by

using a SEXA or DEC statement on a $ card. Any number of constants

91

may be put on one card but no other /tatemeuts or assembly orders are

allowed on the same card. Constants are separated by parentheses with

'*(" after ")" being optional. For sexadecimal constants, Z indicates

a string of zeros, A a string of five sexadecimal zeros and M a string

of five sexadecimal L's. Any legal FORTRAN decimal constant may he

written on a DEC card.

Examples: $

$

SEXA(L)08Z)*10KZ82)4A$

DEC(14)3.)6.1E-3)$

Up to six alphanumeric (hollerith) constants may be stored by

using ALFN in columns 7-10 and $ in column 1. Columns 11-20 are al-

ways stored as one constant, one additional word is stored for each

ten columns until one is blank (it is not stored) or until columns

61-70 have been stored.

Example: $ ALFN THIS IS ALPHABETIC INFO.

Comment lines with COMM in columns 7-10 and $ in column 1 are

allowed and should be used to provide BRLESC I/II operators with infor-

mation about the program that is useful to them, e.g., information

about the tapes required.

Example: COMM TAPE INPUT ON UNIT 1, LABELED 4A7.

Some examples of BRLESC I assembly orders are;

$ AV(F)*7.1)T1$ SHX(Q,2)0286)0$

$ TAPE(SS2B)360)017 $ SET(15=0)3=1$

$ INC(2=2+1)21=21+4)$ CNEQ(W)/2A)42S$

$ B12(R-1,4))TT$ TP10(l2)/M)SELF+2$

$ JS(A)A+50)(F/SEXAPR)$ G0T0(TEST)$

$ 029(07000)S,24-1)11$ MMF(1,6)300)08000$

92

BRLESC II Assembly Language

BRLESC II allows BRLESC II assembly orders to appear within

FORTRAN programs on cards that have a - (minus sign) in column one.

Each card that contains any assembly language must have the "-" in

column one and such cards must not contain any FORTRAN statements.

Each assembly order has an order type followed by one optional

address enclosed in parentheses and a $ character indicates the end of

An order. Thus the general form is "order type(address)$" where the

address and its enclosing parentheses may be omitted, the ")" after

the address may be omitted, and the $ may be omitted after the last

order on a card that is not continued on the next card. Comments may

appear after "$$".

For BRLESC II assembly order cards:

Col. 1 - (Minus sign)

Cols. 2-5 Blank, statement number or symbolic name that

begins with a letter.

Col. 6 Normal FORTRAN continuation column.

(- in col. 1 not required on continuation cards.)

Cols. 7-72 One or more assembly orders.

Cols. 73-80 Identification only.

Location Field (Cols. 2-5):

BRLESC II allows 2, 3 or 4 orders per word and allows jumps

to either the left half of a word or the right half. When a statement

number appears in columns 2-5, the first order on that card will start

at either the left half or the right half of a word. When a symbolic

name appears in cols. 2-5, the first order on that card will start at

the left half of a word except when the name begins with R; then the

first oiaer will start at the right half of a word. A symbolic name

used as a location of assembly orders must not have previously teen

assigned memory space. Therefore, the location must be its first

S3

appearance or else it must have appeared in some specification state-

ment or appeared only as a primary address in assembly orders.

Successive duplicate names or statement numbers are allowed,

only the first one is used.

Symbolic Order Types:

Appendix 0 lists the acceptable symbolic order types and a

brief explanation of each order. Note that the jump orders that con-

tain a '(prime) character will always jump to the right half of a word.

The other jump orders jump to the left half of a word, but the compiler

changes them to the prime orders if the specified symbolic address has

been assigned to an order that begins at the right half. Therefore

the jumps without the primes should normally be used. All absolute

(dec. or sexa.) addresses are assumed to be locations of left orders

when used as addresses in jump orders without primes. Sexadecimal or-

der types are also allowed, e.g. 0N4.

Addresses:

An assembly order address may consist of three parts; a

primary address, an index address, and a decimal increment that may be

positive or negative.

The assembly order primary address may be any of the follow-

ing types:

(1) Symbolic. Begins with a letter.

(2) Statement number. Must have a trailing S; e.g.,

13S.

(3) Sexadecimal. Begins with zero.

(4) Decimal. All decimal digits.

(5) Decimal Constant. Preceded with "*", may be

integer, real or hollerith (H, R or prime). May

have a sign.

(6) Sexadecimal Constant. Preceded with "/"; A, M and

Z characters may be used.

94

■

-

'■^""'flS^wR ".

(7) Subroutine or Function Name. Must be preceded

with "F/".

All addresses except constants (types 5 and 6 above) can be

indexed by writing a comma after the address followed by an index ad-

dress. The index address must be symbolic, sexadecimal, or decimal.

The effective address is strictly a sum of the address assigned to the

primary address and the contents of the index address plus any incre-

ment. Thus if A is an array; A, I addresses A(l) when 1=0 and A(2)

when 1=1, etc. Note that only "one dimensional" indexing is allowed

and normal FORTRAN subscripting is not allowed although the name of an

array can be used as the address of the first element of that array.

If the primary address is not the name of a dummy argument,

a decimal increment can be used in addition to indexing. The decimal

increment may be written either before or after the index address.

Some examples of addresses with increments are: (B +2) (B - 4)

(Q + 17,J) (TV4, K3 + 6) (, N + 2) (-1). Dummy arguments may be index-

ed but cannot have an increment. An increment can appear beyond a

comma only if it follows an index address.

IOS Address:

The primary address of the IOS order gets special processing

to allow symbolic specification of various I/O operations. The table

below lists all of the special symbolic names that can be written.

More than one can be written if they are separated by minus signs. Nor-

mal indexing is allowed but an increment is allowed after an index

address only. The address may be specified completely as one sexadeci-

mal address. It may be one decimal address only if it is less than 256.

Special IOS address symbols:

1. Unit Selection:

TAPE (optional)

CARD

DISC or DISK

95

2.

PRINT

PUNCH

Decimal integer to select tape unit.

Read and Write Selection:

R (optional)

W

R72

W72

60 or 64 bits per word.

60 or 64 bits per word.

72 bits per word.

72 bits per word.

3. Special Tape Operations:

MF

MB

MFMF

MFMB

WFM

REW

UNLOAD

Move forward by blocks.

Move backward by blocks.

Move forward by file marks.

Move backward by file marks.

Write file mark.

Rewind.

Rewind and unload.

4. Character Size Selection:

C6 (optional)

C8

5. Parity Selection:

Six bit characters.

Eight bit characters.

OP (optional)

EP

IP

Odd parity.

Even parity.

Ignore parity.

Each symbol marked "optional" is used if no conflicting sym-

bol is specified, e.g. tape is the type of unit selected if CARD or

DISC, etc. is not specified. The above symbols may appear in any se-

quence within the primary address.

96

'"

Care must be exercised in manipulating a tape with assembly

orders if the same tape is used in FORTRAN statements. If possible,

normal FORTRAN statements should be used. In particular, the FORTRAN

formatted tape input routine reads the next block on a tape as soon as

the last line of the previous block has been read by the FORTRAN pro-

gram. If this has just happened on FORTRAN tape i, then the 4 tag bit

(bit 67) of OFNO.i is a one, otherwise it is zero. Examples of IOS or-

ders;

97

IOS (TAPE-MB-4)

IOS (DISK-W)

IOS (WFM-3)

IOS (R72-C8-7-EP)

IOS (RFW.NTAPE +1)

IOS (02409)

Address assigning and order length:

The BRLESC II FORTRAN compiler assigns nonarray variables to

short memory addresses at their first appearance in an executable state-

ment if they did not appear in a specification statement. However, the

appearance of a name as a primary address in an assembly order does not

cause its assignment to a short address. All unassigned primary ad-

dresses will cause long (half word) orders to be generated. However the

appearance of an unassigned name as an index address will cause its

assignment to a short address (if one is available). The length of each

order is determined when it is first encountered and it is made short

when possible. Unusable portions of words are filled in with OFF or-

ders (nonindexable no operation orders) Care must be exercised when

making any assumptions about either the length of an order or its po-

sition within a word. In particular, blank addresses that are to be

extracted into with E or E' orders should be written as 0100 to insure

the use of a half word order.

MAXO and MAXT cards:

Normal MAXO and MAXT cards have a $ In column one so that the

same card will work in either FORAST or FORTRAN on both BRLESC I and II.

However BRLESC II FORTRAN will accept such cards with - (minus sign) in

column one while BRLESC I will ignore all cards with a minus sign in

column one. Thus it is possible to specify different maximum times for

the two computers by inserting the - MAXT card before the $ MAXT card

since each machine will actually use only the first MAXT specified

Each machine uses the last MAXO card, so the - MAXO should be after the

$ MAXO if different line limits are desired. BRLESC II does not allow

any other assembly orders on the same card with MAXO or MAXT.

SYN cards:

Symbolic names may be assigned absolute addresses by using a

SYN statement on a card with the minus sign in column one. SYN may be

followed by any number of pairs cf parentheses that enclose one symbol-

ic address and one absolute address separated by an "«" symbol. The

"(" after ")" and the final ")" are optional. A $ character marks the

end of the SYN statement and the rest of the card cannot be used for

anything except comments.

Example:

SYN (T = 06) 4 - W) TA = DFN0)$

SEXA and DEC cards:

A group of sexadecimal or decimal constants may be consecu-

tively stored by using a SEXA or DEC statement on a card with the minus

sign in column one. The first constant will be stored at the location

specified in columns 2-5 of the card and the others will follow consecu-

tively. Constants must be separated by parentheses with "(" efter ")"

and the last ")" being optional. No assembly orders or any other state-

ment can appear on the same card. Comments may follow a $ a. the end of

the constants.

98

In sexadecimal constants, A indicates five sexadecimal zeros,

M indicates five sexadecimal L's, and one Z indicates enough zeros to

fill out a word of 17 sexadecimals. Constants of less than 17 charac-

ters and no Z are right adjusted, i.e., (4) is the same as (Z4).

Any legal FORTRAN decimal constant may appear on a DEC card.

The constants may have signs.

Examples:

-SE SEXA (KZ8) (LNAM)N4Z)28$

-V DEC (19)14.26)-6.9E-4) + 18)$

ALFN cards:

One to six alphanumeric (hollerith) constants may be stored

consecutively by using an ALFN statement on a care1 that has a minus

sign in column one. "ALFN" must appear in columns 7-10 and columns

11-20 are always stored as one alphanumeric constant. Each following

group of ten columns (21-30, 31-40, etc.) is stored until one is all

blank or until cols. 61-70 have been stored. Such cards cannot be con-

tinued on the next card by using column 6.

Example:

ALFN ABCDEFGHIJKLM

Examples of BRLESC II Assembly Order Cards:

-12 F+(A)$ F(+)(B,J)$ FM(T)$ U(114S)$

-162 L+(LW)$ ANDN(/LZ)$ CZ(147S)$ $ COMMENT

-NEW 1(+)M(J)$ L+(*l)$ I0RM(V,J-1)$

-RAN LR(0100)$ + (V3)$ LSD(24)$ LM(T4)$

F+(AB)$ FXA(*-5.213E2)$ F/ (TM,K1)$ FM(018,X)$ U(J0B1)

99

XX. MAXIMUM TIME AND OUTPUT SPECIFICATIONS

BRLESC I/II allow the programmer to control the maximum amount of

time a program will be allowed to run and the maximum amount of output

it will be allowed to print. If the programmer does not specify these

maximums, BRLESC I/II will set them at five minutes and 1200 lines.

Whenever either one of the specified maximums is exceeded, BRLESC I/II

will stop execution of the program after the appropriate error print.

Maximum Time

The maximum time specification is of the form:

$ MAXT(integer number)MINS.

where the initial $ is in column 1 and the rest of the specification is

in columns 7-72. "MINS." may be replaced with "HRS." or "SECS." to

specify hours or seconds instead of minutes. Note that fractions of

time units are not allowed.

The time begins when this card is encountered by the compiler and

hence some compilation time must be included when estimating the maxi-

mum time.

If the statement number 98765 has been used in the main program,

BRLESC I jumps to that statement when the maximum time has been ex-

ceeded. If 98765 has not been used as a statement number, BRLESC I

gives the following error print:

EXCEEDED MAXT. 11= s OCTAL AR.REFS.« a b c CLK= cr

where s is the octal contents of index register 1, which is usually

the address at which the last subroutine, function, or I/O routine

was referenced; a,b, and c are the octal contents of indexes 10,11 and

12 respectively which are the last array addresses referenced, and cr

is the clock reading at the time of the error print. This clock read-

ing contains six digits, two each for hours, minutes and hundredths of

minutes. This same error print is obtained if BRLESC I stops for some

reason during execution of a FORTRAN program and the clock reading can

100

be compared with the initial time to determine how long the program ran

before it stopped.

On BRLESC II, the following error message is always printed when

the maximum time is exceeded.

EXCEEDED MAX. TIME OR HUNG UP. NI - ni PJ - pj PPJ = ppj

where ni, pj, and ppj are sexadecimal addresses. The ni address is one

(sometimes two) more than the address of where the computer stopped or

was interrupted, pj is one more than the location of the previous jump

instruction and ppj is one more than the address of the jump instruc-

tion that was executed before the previous one. This error message

line is followed by a line of four consecutive words located at ni - 3

with that address printed at the beginning of the line. If statement

number 98765 was used in the main program, BRLESC II jumps to that

statement after printing this error message.

Examples:

$ MAXT(3)MINS.

$ MAXT(90)SECS.

$ MAXT(2)HRS.

Maximum Output

The maximum output specification is of the form:

$ MAXO(integer number)LINES

where the initial $ is in column 1 and the rest of the specification is

in columns 7-72. Blank lines caused by slashes in formats count as

lines; however any lines skipped by using vertical space control charac-

ters do not count. All tape or card alphanumeric output is included in

the counting of lines but binary tape output is not included.

Note that MAXO ends with the letter 0, not zero.

101

When the specified amount of output has been exceeded, BRLESC I/II

will not go to statement number 98765.

BRLESC I gives an error print of:

EXCEEDED MAXO AT s OCTAL AR.REFS. = a b c CLK = cr

where s is the octal address of the statement that caused the output

maximum to be exceeded; a,b and c are octal addresses of the last array

elements referenced and cr is the clock reading at the time of this

error print.

BRLESC II prints the following error message:

EXCEEDED MAXO AT e

where e is a sexadecimal address that is the location of the last entry

to the I/O routine.

Examples:

$ MAXO(500)LINES

$ MAXO(20000)LINES

It is permissible for MAXO and MAXT specifications to be on the

same card with each other or with BRLESC I assembly orders. BRLESC II

also allows MAXO and MAXT cards with a minus sign in column 1, but does

not allow any assembly orders on the same card.

XXI. STATEMENT NUMBER 98765 AND 98766

The statement number 98765 may be used in a main program on BRLESC

I/II to obtain some extra printing after a program fails to run to com-

pletion or exceeds the maximum time. When an unexpected machine halt

occurs, the operator manually causes BRLESC I/II to go to statement

98765 if this statement number was used in the main program. At 98765,

the program should do a limited amount of printing that could be help-

ful in determining where and why the program stopped and then should

execute a STOP statement.

102

Each link of a CHAIN job on BRLESC I may have its own 98765 state-

ment.

The statement number 98766 may be used in a main program on BRLESC

I/II to indicate a statement at which execution should be continued

after a "run error" print has occurred. Such error prints are listed

in Section XXVI. They are errors detected by predefined functions, sub-v

routines, and the I/O routine. If 98766 is not used in a main program,

execution is terminated after a run error print.

Only the last physical link of a CHAIN job on BRLESC I may use

98766 to continue execution after a run error print.

XXII. CHAIN JOBS

BRLESC I allows segmentation of large programs by using CHAIN con-

trol cards and a CHAIN subroutine. BRLESC I is essentially compatible

with 709/7090 FORTRAN in the way this is done. Each "link" of the chain

must be preceded by a control card of

* CHAIN(R.T)

where R is an identifying integer number (less than 32768 on 709/7090)

and T is a tape unit designation of any two alphanumeric characters

(must be B2,B3,A4 or Bl on 709/7090). BRLESC I always uses tape Switch

7 for storing links. Each link consists of a complete FORTRAN program

with a main program followed by all of its subprograms. The initial

control card should follow the identification card but may precede it.

No other control cards are required between links. Only the last link

may end with the * DATA card or an E in column 1.

Any link may begin execution of any other link by executing a CALL

CHAIN(R,T) statement where R and T both are used to identify the link

that is to be executed next.

Data may be passed from one link to the next one through common

storage only. No program should assume any other storage is preserved

from one link to the next. All links that require correspondence of

103

blank common storage on BRLESC I must have the same total amount of

labeled common storage. (BRLESC I assigns blank common storage after

all of the labeled common storage has been assigned in the order the

labels appeared in COMMON statements.) All links that require corres-

pondence between labeled common blocks must have the label la the same

relative position in COMMON statements and the same total length of

common storage preceding It. During execution, when one link calls the

next link, BRLESC I passes the maximum amount of common storage that was

assigned by any link that has previously been executed, in summary,

blank common need not be the same length in each link, but each labeled

common block does usually have to be the same length.

There is a chance of incompatibility between BRLESC I and other

computers if links that have short programs with long common storage

are mixed with links that have long programs with short common storage.

When this incompatibility arises, an error print of CH.COM.BIF occurs.

Sense switches that are preset with BRLESC I control cards will re-

main preset in all following links unless the link contains a new preset

card. Other control cards will not affect following links except a LIST

card will cause dictionary printing in all following links.

DATA statements may not be used in chain jobs on BRLESC I.

XXIII. COMPILING FROM TAPE 12

The BRLESC I/II compilers allow part of a program to be on tape

and part of it to be on cards. The card portion may contain changes,

deletions and additions to the portion on tape. The card deck also con-

tains control cards that specify when the compiler should switch between

compiling from cards and compiling from tape 12.

All of the changes, deletions and additions are accomplished by

switching between the card deck and the tape and by skipping lines on

the tape.

104

Three control cards may be used in the card denk to control the

compilation from tape 12. (This is tape switch 12 which is the same as

FORTRAN unit 9.) The control cards are:

Cols. 73-80
* COMPILE TAPE TO ident.

This control card causes the compiler to begin compiling from tape

12 and to continue compiling from tape 12 until a line is read that has

columns 73-80 identical to columns 73-80 on this control card. This

line on tape is not compiled and will not be used when the card deck has

another control card that causes compiling from tape to be resumed, i.e.,

the line is automatically skipped.

Cols. 73-80
* COMPILE TAPE THRU j.ient.

This control card causes the compiler to begin compiling from tape

12 and to continue compiling from tape 12 until a line has been compiled

that has columns 73-80 identical to columns 73-80 on this control card.

If the same program resumes compilation from tape 12, the very next line

will be used and no lines are automatically skipped.

Cols. 73-80
* SKIP TAPE THRU ident.

This control card causes lines to be skipped on tape 12 until a

line has been skipped that has columns 73-80 identical to columns 73-80

on this control card. After these lines have been skipped, compilation

resumes with the card deck and one of the above control cards must be

used if compilation from tape 12 is desired.

It is permissible to use successive skips; the skipping does not

stop for any reason other than identity of columns 73-80 and reading the

special END TAPE block at the end of the information on a tape.

105

These three control cards are ignored if they are on tape 12 and

should not be put on the tape.

Note that all of the control depends only upon the identification

columns of a line. Thus, statements have no special significance and

a line include all the statements or maybe just a part of a statement

that is on that line. For example, a statement begun on tape could be

continued on cards; however a statement on cards cannot be continued on

tape because the control card that switches to tape 12 compilation will

stop the continuation sequence. Note also that the card deck does riot

actually rewrite any lines on the tape, it only causes the compiler to

use cards instead of tape or to skip lines on the tape.

Data may also be included on the program tape; however, it cannot

be changed by control cards before it is read. The program can read it

by referring to unit 9 in READ statements. If data is to be read, the

last program line on the tape must have been compiled or skipped. Tape

12 is rewound at the end of execution of any program that reads data

from it. It is not rewound if it is used only for compilation.

BRLESC I/II will accept tapes that do not have any extra control

characters on them, i.e., a simple recording of 80 characters per line

with not more than 2000 characters per block. (The block length can

vary on the same tape.) BRLESC II will also accept the normal output

of a FORAST program but not the output of a FORTRAN program.

XXIV. A PROGRAM TO WRITE PROGRAMS ON TAPE 12

A special program is available for writing FORTRAN programs on a

tape switch 12) so that they can be compiled from tape by BRLESC I/II.

This program accepts one or more FORTRAN programs, including data if de-

sired, as input on cards and writes them on tape with a new card number

sequence and identification in Columns 73-80.

106

There are two special control cards that are to be used; one to

mark the end of a program and one to mark the end of all the programs.

They must be punched with the initial E in column 1 and no blanks other

than one blank after END. These two cards are:

END PROGRAM This card is to be inserted at the end of

each complete program deck except it is

not required when the END TAPE card is

used. It goes after the data when data

is included. It causes a file mark to

be written on tape 12.

END TAPE This card is to be inserted at the end of

the last program deck that is to be put

on tape 12. It goes after data when data

is included. It causes the normal end-

tape file mark and block to be written

and tape 12 to be rewound. If columns

11-16 contain "C.PROB", the computer will

immediately begin to compile the next

problem which could be a card deck that

causes compilation of a program that was

just written on tape 12.

This program puts new identification in columns 73-80 of each pro-

grar line. This consists of 1-6 characters, usually the name of the

subprogram followed by an absolute line count that starts at one at the

beginning of each subprogram. One or more characters are removed from

the end of the name of the subprogram whenever those columns are needed

for the line count.

The name of the main program will be "MAIN" if columns 73-78 of

the first card are blank. If columns 73-78 of the first card are not

blank, they will be used as the name of the main program. The state-

ments are scanned from the beginning of each line so as to obtain the

name of a function or subroutine when such a statement is the first

107

statement on a line. The FUNCTION statement may have a type declaration

in front of it.

If data is included, the normal * DATA card (or E in col. 1)

should be. included between the program cards and the data cards. All

80 columns of data cards are copied onto the tape.

If you wish to keep the identification columns as they are on the

cards, an * DATA card can be placed in front of the program and then

all 80 columns of the program cards will be copied onto the tape. How-

ever, that * DATA card must be skipped when compiling the program

from the tape and if data appears after the program, an * DATA card

must precede the data and must have "DATA" in columns 7-10.

This program is written in FORAST and runs only on BRLESC II. This

program will not stop when it reads a PROB card; the END TAPE card must

be used to stop it.

XXV. BRLESC I/II COMPILER ERROR PRINTS

The BRLESC I/II compilers check for a limited number of types of

errors in programs being compiled. All possible errors are not detect-

ed, but some errors will cause one of the error prints listed below.

The type of error can be recognized either by the number that follows

the word ERROR and precedes tha comma or by the "error word" that is

printed. The form of the error print is:

FORTRAN ERROR t,m Error Word AT w ON CARD cc

where

t = type of error; is integer number.

m = ten col. field at which error was detected; m=0,l,

...,7

Error word = ten alphanumeric characters that describe the type

of error as listed below,

w = rest of the mth field on the card at time of error

detection.

108

cc = decimal card count of cards read by compiler.

After this error line is printed, another line is printed which is

usually the card on which the error occurred, although some undetected

errors may later cause an error print at a point where no error occurs.

On BRLESC I, when w=m=0, the error was probably on the previous card,

rather than on the card that is printed. It should be noted that the

probable reason for the error listed below may not be correct, the true

error may be quite different.

If any one of the following errors are detected by the compiler,

the program will not be executed but a dictionary of names that appeared

only once in the progran. will always be printed. If the LIST(START)

control card is being used, the error print will appear between the

source statements at the point at which the error was detected; other-

wise it will appear before the dictionary.

After an error, compilation is continued until the end of the pro-

gram is encountered or until 128 errors have been detected.

DESCRIPTION

Illegal character on program card.

Symbolic statement number, not all decimal digits.

Mixed expression, two operands are not same type.

Integer raised to fl.pt. power is illegal.

Illegal RETURN statement, used in main program.

No equals symbol at proper place in DO statement.

Tried to compile more than 60 subprograms. (255 on

BRLESC II)

Big address is indexed. Program is too big.

BRLESC I only)

No comma at proper place in computed GOTO statement.

Illegal statement.

Subscript involves a fl.pt. number.

Number of subscripts is not same as dimensionality

of the array.

TYPE ERROR WORD

1 ILL.CHAR.

2 SYM.ST.NO.

3 MIXED EXFR

4 INT**FLT

5 IL.RETURN

6 NO = IN DO

7 SUBPRS.>60

8 BIG ADD.ID

9 NO, CP.GOTO

10 ILL.STAT.

11 FLT.INDEX

12 ILL.DIM.

109

TYPE ERROR WORD DESCRIPTION

13 XLL.COMMA

14 ASD.ST.NO

15 COMPLEX AR

16 EQU. TABLE

17 COM. ASGND

18 ARRAY.REF

19 DICT.FULL

20 COL.7 NO.

21 SENSE > 6

22 DO NO END

24 IL. EQUALS

25 IL. - BOOL

26 IL. / BOOL

28 IL.**BOOL

29 DRUM STAT.

30 IL.IO LIST

31 FAP CODE

32 BAD TAPE 7

33 NO IDENT *

34 N>10 in NH

35 CONST POOL

Comma is used improperly in an arithmetic ex-

pression.

Assigned statement number; same statement number

used twice, but not in succession.

Coirplex type-statement or I in Column 1.

EQUIVALENCE table is full. (BRLESC I allows about

700 different names for whole program. BRLESC II

allows about 400 names for each subprogram.)

COMMON name was previously assigned.

Array name used before it was declared.

Dictionary is full, (about 4000 names.)

Statement begins with a decimal digit.

Sense light or sense switch number greater than 6.

Statement number used in DO Statement never appear-

ed. (It may have been missed due to another error.)

Illegal = symbol or arithmetic was specified on the

left of the = symbol.

Illegal "not" operation on boolean card. (BRLESC

I only)

Boolean division is undefined. (BRLESC I only)

Boolean exponentiation is undefined. (BRLESC I

only)

Drum statements not allowed on BRLESC I/II.

Illegal input/output list; usually a name has not

been declared an array.

An * FAP card is not allowed on BRLESC I/II.

Temporary tape 7 gives persistent parity errors.

No identification card at beginning of program.

Alphanumeric constant of more than ten characters.

The constant pool is full. (1696 arrays and differ-

ent constants on BRLESC I and 1472 different con-

stants on BRLESC II.)

110

TYPE ERROR WORD

36 LABEL COMM

37 COM. TABLE

38 STP FULL

39 DOT FULL

40 ATP FULL

41 ARG FULL

42 FTB FULL

43 I>32 in AE

44 ILL.EQUIV

45 NON-SEXA.

46 IL.AS.O.T.

47 IL.AS.ADD

48 NO $ AS.O.

49 NON-DEC

50 IL.AS SYN

51 DM VAR ID.

52 NOT , OR)

53 STPE FULL

54 SEL FULL

55 DIM. COMMA

56 LONG I NO.

57 DUPL. COM.

58 MAXTO NO I

59 EXTRA PUNC

60 BAD L.NAME

DESCRIPTION

More than 63 different COMMON labels.

The COMMON table is full. (750 names and labels on

BRLESC I, 1000 on BRLESC II within one subprogram

or main program.)

More than 800 dummy argument references.

More than 63 nested DO loops.

More than 64 dummy argument references in a state-

ment function.

More than 100 subprogram arguments.

More than 50 subroutine names on F cards. (BRLESC I)

Arithmetic expression has too many operations

grouped to the right.

Illegal EQUIVALENCE statement.

Illegal character in a sexadecimal word or address.

Illegal BRLESC I/II assembly order type.

Illegal BRLESC I/II assembly address.

No $ symbol at end of BRLESC I/II assembly order.

Improper character in a decimal number.

Illegal SYN statement.

Dummy argument was indexed in assembly order.

(BRLESC I)

Improper punctuation.

More than 600 ENTRY dummy argument references.

More than 100 ENTRY names and dummy arguments.

Missing comma in DIMENSION.

Integer constant of more than 17 digits.

Duplicated name in COMMON.

Number on MAXT or MAXO card is not an integer.

Extra punctuation symbol.

Bad Jogical operation or relation name or illegal

perio'.

Ill

T*PE ERROR WORD

61 DATA BAD -

62 DAT.IL.NO-

63 DATA FULL

64 HUNG UP

65 VAR.DIMENS

66 DUMMY VAR.

67 DUM IN COM

68 CHANGE + -

69 =£==:====.> 24

70 AR. NO (,)

71 ERRüRS> 128

72 AR.FORMAT (

73 SUBS-N0S< 0

74 = IN IF

BRLESC

DESCRIPTION

Equal symbol at Illegal place In DATA statement.

Illegal number in a DATA statement.

Too much data in DATA statements. (About 1000

names and numbers on BRLESC I, 2000 on BRLESC II.)

Computer stopped during compilation.

Variable dimension in EQUIVALENCE.

Dummy argument in EQUIVALENCE.

Dummy argument in COMMON.

Obsolete "CHANGE + AND -" control card.

More than 24 "=" symbols in one statement.

Array name not followed by "(" or "," or ")".

More than 128 compile errors.

Subscript on array format name.

Constant pool and subroutines overlap storage.

"=" instead of .EQ. Ln IF statement

II has the following additional error prints:

A statement doesn't end where it should.

Improper punctuation in a DIMENSION statement.

A name is declared as an array more than once.

A specification statement appeared after the first

executable statement.

Illegal adjustable dimensions; either the array

or the dimensions are not dummy arguments.

More than three dimensions either declared or used.

A common label name appears more than 255 times in

one subprogram.

The second part of the dictionary is full.

A statement number contains a decimal point.

EQUIVALENCE attempts to extend the beginning of

common backward. One of the names from the er-

roneous equivalence will replace w in the error

print.

112

75 NO $ E.ST

76 DIM PUNCT.

77 DUPL.DIM.

78 SPEC. LATE

79 ADJ.DIMENS

80 DIMENS > 3

81 LABEL > 255

82 DICT2.FULL

83 ST.NO.PI.

84 C0MM.BACK

TYPE

85

86

ERROR WORD

IL.EQUIV.

LAB.LENGTH

87 EQUIV.SUB

88 DUM ARG > 60

89 NOT (OR $

90 NOT , OR $

91 EXT.STAT.

92 TYPE STAT.

93 NOT COMMA

94 NOT INTEG.

95 FUN NO DUM

96 LONG STAT.

97 NO OPERAND

98 NOT LOGIC=

99 MACH ERROR

100 INT**NO.< 0

101 NOT)

DESCRIPTION

Illegal EQUIVALENCE, probably equlvalenced two

common variables or caused nonconsecutive array

elements. One of the names from the erroneous

equivalence will replace w in the error print.

A labeled common block is not the same length as

it was in some previous subprogram. The label

will replace w in the error print.

An EQUIVALENCE subscript has an improper number

of dimensions. It must be one or the number de-

clared. The name involved will replace w in the

error print.

More than 60 dummy arguments.

Improper punctuation, should be (or $.

Improper punctuation, should be , or $.

Improper punctuation or name in an EXTERN^ state-

ment.

Improper punctuation or name in a type statement.

Improper punctuation, should be comma.

Improper type of name or constant, should be

integer.

No dummy arguments for function subprogram.

Too many operations in one statement, statement

doesn't end where it should, or more than 199 sub-

scripts in one statement.

An operand has been omitted.

Name on left of = symbol is logical type when ex-

pression on right is not logical.

Probably a machine error.

Integer quantity raised to a constant negative

power.

Improper punctuation, should be ")".

113

TYPE ERROR WORD DESCRIPTION

102 SHORT STAT Short statement, appears to be wrong kind of state-

ment, or maybe a specification statement that ap-

pears after the first executable or first DATA

statement.

103 AR.NOT DIM Arriy not dimensioned or statement function is

after first executable statement.

104 S.F.DUM > 30 Statement function has more than 30 dummy argu-

ments.

105 NO = IN SF No equal symbol in what appears to be a statement

function,

106 COLS. 1-5 Illegal character in cols. 1-5.

107 END TAPE12 Tried to compile past the end of all information

when compiling from tape 12.

108 AS.INC DUM Had increment on dummy argument in BRLESC II

assembly order.

ERROR. DATA STAT. NOT ONE TO ONE CORRESPONDENCE BETWEEN NAMES AND

NUMBERS. (Self explanatory.) Both BRLESC I/II also print two ad-

ditional sexadecimal lines, one that contains some absolute addresses

assigned to the names in the DATA statement and a second line that

contains the next four numbers (in sexadecimal) that were in DATA

statements after the point at which the error was detected.

ERROR. DATA STAT. CANNOT STORE IN LAST 4000 WORDS OF MEMORY

Neither computer can store values from DATA statements in the last

4000 words of memory, but only BRLESC II prints an error print when

this occurs. BRLESC II also prints the same two lines after this

error print as after the "no correspondence" DATA statement error

as explained above.

FORTRAN ERROR, INDEXED IARGE ADDRESS. 3 PREV. ORDS. + PART ORDER ON

NEXT LINE. A BRLESC I assembly order address larger than 16383 was

also indexed.

114

TAPE 7 REACHED END OF TAPE DURING CHAIN COMPILATION. PLEASE TRY AGAIN.

(Self explanatory, BRLESC I only,)

ERROR TAPE 7 FORTRAN (BRLESC I only)

If the right end of this error print line says "PARITY ERROR",

it was caused by a persistent error on temporary tape 7. If the line

ends with anything else, it is a name that cannot be found in the

dictionary and this usually indicates a machine error.

115

XXVI, BRLESC I/II RUN ERROR PRINTS

Some of the predefined FORTRAN subroutines and functions used on

BRLESC I/II detect certain errors in the data they process. When such

an error is detected, a RUN ERROR line is printed and the program is

not allowed to continue tc run. The error print consists of one line

of information of the following form:

RUN ERROR •Error word' Date Cols,1-30 of Ident.Card LE No.

where "Error word" is an alphabetic word that identifies the type of

error;

Date is the date.

LE is the location of the entry to the subroutine or

function that detected the error. It is a decimal ad-

dress on BRLESC I and a sexadecimal address on BRLESC II.

No. is a number that in some cases was an illegal argument.

Run Error List: (X and Y represent arguments.)

ERROR WORD SUBROUTINE REASON NO.

LOG X NEG ALOG xso X

EXP BIG X E*:P X > 354.89 X/Loge2

ARCSIN 1+ ARCSIN or ARCCOS
-49 X > 1+2 III

SINGOS NS SIN or COS or
SINGOS

| X | /2TT a 1613
X/2TT

POWER 0T0- POWERS
(Exponent iat ion)

X = 0 and Y s 0 Zero

CVFTOI BIG INT or IFIX | X | a 1614 X

POWER A < 0 POWERS For X**Y, X < 0

when | X | a 16.

or not a multiple

of .5

X

L0G10 < = 0 ALOG10 X <: 0

116

ERROR WORD

END TAPE t

BAD FORMAT

NO(FORMAT

EXCEEDED MAXT

EXCEEDED MAXO

RD.TAPE 8

WR.TAPE 6

END FILE 6

SKIPFILE 6

SKIPFILE W

BACKFILE 6

BACKFILE 8

EXPLANATION

Tried to read beyond binary information written on

Fortran tape t.

Illegal character in a FORMAT statement. (Cols. 21-30

of the identification line get replaced with the first

ten characters of the bad format.)

More right parentheses than left parentheses in a FORMAT

statement.

Exceeded maximum execution time or did not run to normal

completion. (See Section XX)

Exceeded maximum amount of output. (See Section XX)

Attempted to read on tape svitch 8, which is the stand-

ard output tape and normally is FORTFYN unit 6. The

No. at the end of the error line is the FORTRAN unit

number.

Attempted to write on tape switch 6, which is the stand-

ard "card" input and normally is FORTRAN unit 5. The No.

at the end of the error line is the FORTRAN unit number.

Attempted to execute an END FILE statement using tape

switch 6. The No. at the end of the error line is the

FORTRAN unit number.

Attempted to execute SKIPFILE subroutine using tape

switch 6.

Attempted to use SKIPFILE subroutine to move a tape that

was last used for writing.

Attempted to execute BACKFILE subroutine using tape

switch 6.

x\ttempted to execute BACKFILE subroutine using tape

switch 8.

117

The following error prints are only on BRLESC II:

ERROR WORD EXPLANATION

I/O OH H type in format preceded by zero or no integer.

I/O EXPBIG Real input number is too large. (10)

L.LINEREAD Input or decode line is too long. (160 characters.)

L.LINE PR Output or encode line is too long. (160 characters,

but can't print more than 132 characters.)

I/O SEXANO Illegal character in sexadecimal input field.

For the above five I/O error prints on BRLESC II, the last number

on the error line is the decimal address of the format being used.

Also, the ten characters, which normally are columns 21-30 of the

identification line, in the error line have bean replaced with the

first ten characters of the format.

The following error prints are only on BRLESC I:

ERROR WORD EXPLANATION

LONG LINE Input or output line is more than 170 characters.

TAPE TKA u Persistent tape error on trunk A where u is tape switch

number and "no." is total number of tape errors.

TAPE TKB u Same as TAPE TKA u except error is on tape trunk B.

MACH TAPE- Machine tape error of setting negative sign bits when

there wasn't any parity error.

CH.COM.BIG Illegal combination of large and small COMMON in CHAIN

links.

CHAIN ID. A CHAIN link called is not on the tape.

CHAIN PAR. Persistent tape 7 parity error when reading a CHAIN link.

118

XXVII. OPERATION OF BRLESC I/II COMPILERS

The BRLESC I/II compilers each exist on magnetic tape. Many

copies of the compiler and the predefined subroutines and functions

are on one tape and the tape reading is arranged so that it is checked

and automatically corrected by using the next copy on the tape. The

tape automatically backs up twenty copies after the last copy on the

tape is used. Normally, successive copies are used for compiling suc-

cessive programs.

Much of the translation is done concurrently with the reading of

the program cards (or tape). The partially translated code is kept in

memory as much as possible and put on temporary tape switch 7 when the

memory is full. The dictionary and constant pool are kept in the mem-

ory. After the last card of the program is read (E in Column 1 or *

DATA), all unassigned symbols in the dictionary are assigned storage.

The memory that will be used by a program is cleared to zeros and then

the translation of each instruction is completed and it is stored in

the memory for execution. Programs are stored from 01040 on BRLESC I

and from 01400 on BRLESC II and may extend to the end of the memory.

Next, the subroutines are read from the compiler tape and the ones

needed are stored backwards from 0840 on BRLESC 1 and from 09K0 on

BRLESC II. (The standard input/output routines occupy 0860-103L on

BRLESC I and 09K0-013LL on BRLESC II.

Neither compiler performs any optimization that requires analysis

of the executable flow between statements. They do perform some simple

optimizations within statements. These primarily are; performing oper-

ations involving only constants at compile time, adding instead of

multiplying by two, multiplying by the reciprocal of a constant instead

of dividing, using multiplication for raising numbers to small integer

powers, and generally avoiding unnecessary and redundant computer in-

structions. However, the recomputation of common subexpressions is not

eliminated and statements are generally performed exactly as written.

It is the programmer's responsibility to not write programs that contain

gross inefficiencies.

119

XXVIII. SPEED OF BRLESC I/II FORTRAN COMPILING

The BRLESC I/II compilers are very fast and are designed for

"load and go" operation. Programmers are encouraged to keep their

FORTRAN programs in symbolic form and translate them each time they

are run. This wastes very little if any computer time and is most

convenient for the programmer.

Most of the translation is done concurrently with reading the pro-

gram cards at the present maximum speed of 800 (1500 on BRLESC II) cards

per minute. The total time required on BRLESC I for translating a pro-

gram consisting of C cards can be approximated by the formula:

time in sees. = 2 + C/13 + C/75

The 2 seconds is compiler tape time, the C/13 is card reed Lime and

C/75 allows time for reading the temporary tape and completing the

translation. If the program to be translated is on tape, the C/13 term

can be reduced by at least one-half. So the translation rate is about

700 statements per minute from cards and about*. 2500 statements per

minute from tape. (The tape rate will vary from about 1200 to 4000

statements per minute, depending on the complexity and length of the

statements being translated.) BRLESC II will compile approximately

twice as fast es BRLESC I if printing is not done on-line.

120

XXIX. CHECKLIST FOR CONVERTING OTHER COMPUTER
FORTRAN PROGRAMS TO BRLESC I/II FORTRAN

1. The first card should be an identification card with an asterisk

in Column '.. Columns 2-20 should contain a valid BRLESC I/II

problem number.

2. Insert MAXO and MAXT cards ($ in column 1) if program writes more

than 1200 lines or runs more than 5 minutes.

3. If the signs punched on the input data do not agree with BRLESC

I/II signs, the use of a CALL SETMSI(i) statement is required

where i = 1 means y punch is minus, i = 2 means x punch is minus,

and i = 3 allows either x or y to indicate minus.

4. For BRLESC I, DIMENSION, COMMON and EQUIVALENCE statements must be

arranged in that order whenever any variable name appears in more

than one of these statements. Also a variable cannot be madi

equivalent to itself, either directly or indirectly.

5. If there isn't an * DATA card between the program and the input

data, insert such a card. (A card with an E in column 1 may be

used inrtead of the * DATA card on BRLESC I/II.)

6. If the program uses sense switches, it is best to insert control

cards to preset them. (*SETSSW i UP or DOWN)

7. If tapes are used, make sure the tape unit numbers used are com-

patible with BRLESC I/II. (Those over 9 may need to be changed.)

8. If desired, change tape output to card output or vice versa by

inserting control cards. Since BRLESC I does not have an on-line

printer, PRINT statements cause output on tape switch 8 unless

changed by control cards.

9. Arrays cannot have more than three dimensions and each reference

to an array element must use the same number of subscripts as de-

clarad in the array definition.

121

10. A nonsubscripted array name cannot be used to represent only the

first element of the array.

11. For BRLESC I, an array argument for a subprogram must have the

same number of dimensions as the corresponding array dummy argu-

ment within the subprogram. Such array arguments must not have

any subscripts, i.e. the argument must be just the name of the

array. For example, it is illegal to try to use a column of a

two dimensional array as an argument for a one dimensional array

dummy argument.

12. Alphanumeric constants are restricted to a maximum of ten charac-

ters except in FORMAT statements.

13. When indexing information is specified within an I/O list, BRLESC

I/II do not allow these index variables to be involved in arith-

metic subscript operations except for the addition or subtraction

of a constant. Indexing control within I/O lists does also actu-

ally use the variable named rather than just an unnamed index

register as happens on some computers.

14. DO indexing variables actually get used for counting within the

DO loop. Some computers may use an unnamed index register in-

stead.

15. The program needs to be modified if it contains any of the follow-

ing: (1) DRUM or DISC statements;. (2) complex arithmetic, (3)

assembly instructions for some other computer, (4) more memory or

tape unita than available on BRLESC I/II, or (5) any of the non-

standard statements and features that are allowed on some other

computer and not allowed on BRLESC I/II.

16. If the beginning of an assignment statement is the same as the

beginning of some other FORTRAN statement, BRLESC I/II may er-

roneously assume that it is the other statement. One of the error

prints will usually occur when this happens. It is best not to

use statement names, such as IF, DO, READ, etc., as variable names,

122

.

especially arrays. Also TYPER, TYPEI, TYPEL, TYPED and TYPEC must

not be. used as the first five letters of any statement except a

TYPE statement on BRLESC I. BRLESC II has this i -riction only

on the first executable statement in each subprogram.

17. ENTRY statements may have to be moved closer to the beginning of

a subprogram if any of its dummy arguments will actually be used

in a statement that precedes the ENTRY statement. For CDC FORTRAN

programs, a list of dummy arguments may need to be added to the

ENTRY statement.

18. Nonstandard subprogram exits are not allowed. (Indicated by an *

instead of a name on an argument list and integer numbers after

RETURN in RETURN statements.)

19. Arithmetic statement functions are made available to a whole pro-

gram on BRLESC I rather than just the subprogram in which they

appear. This shouldn't cause any difficulty unless the same name

has been used for two different arithmetic statement functions.

20. If possible, ask the original programmer if any special character-

istics of a particular computer or FORTRAN compiler were assumed

when writing the program.

21. If possible, run a test case that has been run on another computer.

In addition to the above general comments, programs that were

written for other computers can have a number of other incompatibilities.

The following list is a list of some of the features that are allowed on

at least one other computer but are not allowed on either BRLESC I or

BRLESC II:

1. Complex arithmetic.

2. Mixed type arithmetic expressions.

3. DO loops that will not be done at least once.

4. BUFFER IN, BUFFER OUT, IF (EOF,t), IF(IOCHEC",t) and IF(UNIT,t)

statements.

123

5. Executable DATA statements that have statement numbers.

6. Numbers as COMMON labels.

7. Octal constants with a B at the end.

8. ENTRY statements without dummy arguments. CDC automatically

uses the subprogram dummy arguments with each ENTRY statement.

9. NAMELIST statements.

10. Type-statements of nonstandard form that declare unusual data

structures and operations.

11. Type-statements and DIMENSION statements that contain initial

values.

12. Nonstandard RETURN statements, e.g. RETURN 3 and associated

CALL statements.

13. IMPLICIT, PARAMETER, DEFINE, DEFINE FILE and FIND statements.

14. T format specification and free format I/O.

15. END and ERR parameters in READ statements.

16. More than three dimensions.

17. INCLUDE, DELETE, EDIT and ABNORMAL statements.

18. .EOR. logical masking operator.

19. GLOBAL and ACCEPT statements.

20. Improper handling of underflow, overflow, rounding, and sign

of zero.

124

XXX. SUMMARY OF BRLESC I/II FORTRAN STATEMENTS

Notations:

s,sl,s2,..... are statement numbers (look like integer numbers),

i,il,i2, are integer variable names.

m,ml,m2 are integer variable names or integer constants.

ae represents an arithmetic expression.

le represents a logical expression.

b,c,d,e,f represent any variable names or constants.

t represents a tape unit number.

f represents the statement number or array name of

a FORMAT statement.

v,vl,v2 represent variable names.

Specification Statements:

DIMENSION v,vl,v2,... Declares array names and

maximum dimensions of each.

EQUIVALENCE (v,vl,..),(v2,v3,,..) Declares synonymous names.

COMMON v,vl,.../ a/v2,.../ b/v3,... Declares names common between

subprograms, a and b are

optional labels.

Declares real (fl.pt.) varia-

ble names.

Declares integer variable

names.

Declares logical variable

names.

Same as REAL on BRLESC I/II

except for BRLESC II common

assigning.

REAL v,vl,v2,...

INTEGER v,vl,v2,...

LOGICAL v,vl,v2,...

DOUBLE PRECISION v,vl,

125

COMPLEX v,vl,v2,...

TYPE REAL v,vl,v2,...

TYPE INTEGER v,vl,v2,...

TYPE LOGICAL v,vl,v2 ...

TYPE DOUBLE v,vl,v2,...

TYPE COMPLEX v,vl,v2,...

EXTERNAL name 1,name2,...

Assignment Statements:

v ■ ae

sf(v,vl,...) = ae

v = le

Not allowed on BRLESC I/II.

Same as REAL, (nonstandard)

Same as INTEGER, (nonstandard)

Same as LOGICAL, (nonstandard)

Same as DOUBLE PRECISION,

(nonstandard)

Not allowed on BRLESC I/II.

(nonstandard)

Specifies names of functions

or subroutines that are used

as arguments for other funct-

ions or subroutines.

Evaluates expression ae and

stores result in v.

Statement function where sf

represents its name and v,vl,..

are the dummy arguments.

Evaluates logical expression

le and stores .TRUE, or .FALSE,

in v. (v must be a logical

variable.) (If the operands

for a logical operation in le

are arithmetic variables, then

the operation is performed on

all bits of the word except

BRLESC I uses only rightmost

65 bits. This masking opera-

tion is nonstandard.)

126

vn = ... = vl = v ■ ae or le

Control Statements:

GO TO s

ASSIGN s TO i

GO TO i, (sl,s2,...)

GO TO (sl,s2,...),i

DO s i = ml,m2,m3

DO s i = ml,m2

IF(ae)sl,s2,s3

IF(le)st

Multiple assignment statement.

It is equivalent to the state-

ments : v = ae; v1 = v; ...

vn = vn-1. All v's must be

arithmetic for an arithmetic

expression and all logical for

a logical expression, (non-

standard)

Execute statement s next.

Put address of s into i.

Execute next the statement

whose number was last assigned

to i by an ASSIGN statement.

Execute statement si next.

Repeat statements to and in-

cluding s with i = ml,ml + m3,

ml + 2m3,... until i > m2.

Same as above with m3 = 1.

Execute statement si next if

ae is negative; s2 next if ae

is zero and s3 next if ae is

positive.

where st is any executable

statement except logical IF

and DO. Statement st is done

only if le has value .TRUE.

127

IF(a@ or le)sl,s2

CONTINUE

STOP or STOP w

PAUSE or PAUSE w

CALL name (v,vl,v2,...)

Nonstandard Control Statements:

IF(SENSE SWITCH r)sl,s2

SENSE LIGHT r

IF(SENSE LIGHT r)sl,s2

IF ACCUMULATOR OVERFLOW sl,s2

IF QUOTIENT OVERFLOW sl,s2

IF DIVIDE CHECK si,82

Statement si is executed next

if the expression is not zero

or .TRUE, and statement s2 is

executed next if the expres-

sion is zero or .FALSE. (Is

CDC statement.)

Dummy statement.

End of execution of program,

(w is octal no.)

Computer halts. (Displays

octal no. w.)

Perform the subroutine speci-

fied by "name".

Execute statement si next if

switch r is down, s2 next if

it is up.

For r = 0 turn all sense lights

off. For r = 1,2,3, or 4,

turn light r on.

Execute statement si or s2

next if sense light r is on or

off respectively. Turn light

r off if it was on.

These are special statements to

check certain overflow indica-

tors. Statement si or s2 is

executed next if indicator is

on or off respectively.

128

Subprogram Statements:

SUBROUTINE name (v,vl,v2,...)

FUNCTION name (v,vl,v2,...)

RETURN

END

BLOCK DATA

ENTRY name (v,vl,v2,...)

Input/Output Statements:

FORMAT (Special Specifications)

READ(t,f) list

WRITE(t,f) list

READ(t) list

WRITE(t) list

END FILE t

BACKSPACE t

REWIND t

Defines the name and beginning

of a subroutine.

v,vl,v2,... are the dummy argu-

ments .

Defines the name and beginning

of a function subprogram.

Indicates an execution exit of

a subprogram.

Marks the physical end of a

subprogram.

Special subprogram statement

to allow DATA statements to

store into labeled common

blocks.

Define the name and dummy ar-

guments of extra entry points

for subprograms. (Nonstandard)

Describes the fields for

input/output data.

Read alphanumeric tape.

Write alphanumeric tape.

Read binary tape.

Write binary tape.

Write end-of-file mark on tape.

Move taps back one record.

Rewind tape.

129

Nonstandard I/O Statements:

XEAD £, list

PUNCH f, list

PRINT f, list

READ INPUT TAPE t,f, list

INPUT t, f, list

WRITE OUTPUT TAPE t, f, list

OUTPUT t, f, list

READ TAPE t, list

WRITE TAPE t, list

Nonstandard Internal I/O Conversions:

DECODE(m,f,v) list

ENCODE(m,f,v) list

Data Initialisation Statements:

DATA v,vl,.../c,cl,.../

DATA (v=c),(vl»cl),...

Read cards. Same as READ(5,f)

statement on BRLESC I/II.

Punch cards. Hay write on tape

switch 8 on BRI£SC I/II.

Originally meant to print on-

line. BRIESC I/II write on

tape switch 8 (FORTRAN unit 6).

Read alphanumeric tape.

Read alphanumeric tape.

Write alphanumeric tape.

Write alphanumeric tape.

Read binary tape.

Write binary tape.

Decode alphanumeric information

into items on list.

Encode list items into alpha

numeric characters.

Stores initial values for

variables. c,cl,... represent

constants.

This is CDC form of the DATA

statement. (Nonstandard)

130

REFERENCES

1. American National Standards Institute Document X3.9-1966,
FORTRAN, March 1966.

2. Campbell, L. and Beck. G. The Instruction Code for the BRL
Electronic Scientific Computer (BRLESC), Ballistic Research
laboratories Memorandum Report No. 1379, November 19Ö1.

3. Campbell, L. and Beck, G. The FORAST Programming Language for
ORDVAC and BRLESC, Ballistic Research Laboratories Report No.
1273, March 1965.

4. IBM 7090/7094 Programming Systems FORTRAN II Programming.
(Form C28-6054-5), 1963.

5. IBM 7090/7094 Programming Systems FORTRAN IV Language,
(Form C28-6274-2), 1963.

6. FORTRAN 66, CDC 6600 Programming System, Volume 3, 1964.

131

APPENDIX A. LIST OF PREDEFINED FUNCTIONS FOR BRLESC I/II

(R indicates real and I indicates integer)

(ai indicates ith argument)

II
NAME

ST'D
NAME ARGUMENT RESULT

Number of
ARGUMENTS DEFINITION

ABSF ABS R R 1 Absolute value.

XABSF IABS I I 1 Absolute value.

INTF AINT R R i Truncation to whole number.

XINTF INT R I i Convert real no. to integer.

MODF AMOD R R 2 al (mod A2).

XMODF MOD I I 2 al (mod a2).

MAXOF AMAXO I R ;> 2 Chooses largest argument.

MAX1F AMAX1 R R 5 2 Chooses largest argument.

XMAXOF MAXO I I s 2 Chooses largest argument.

XMAX1F MAXl R I £ 2 Chooses largest argument.

MINOF AMINO I R ^ 2 Chooses smallest argument.

MIN1F AMINl R R ^ 2 Chooses smallest argument.

XMINOF MINO I I s 2 Chooses smallest argument.

XMIN1F MINI R I >. 2 Chooses smallest argument.

FLOATF FLOAT I R 1 Convert integer to real.

XFIXF IFIX R I 1 Convert real to integer.

SIGNF SIGN R R 2 Sign of a2 * | al | .

XSIGNF ISIGN I I 2 Sign of a2 * | al | ,

DIMF DIM R R 2 al - minimum (al,a2).

XDIMF IDIM I I 2 al - minimum (al,a2).

SQRTF SQRT R R 1 Square i root.

SINF SIN R R 1 Sine (argument in radians).

COSF COS R R 1 Cosine (argument in
radians),

LOGF ALOG R R 1 Natural logarithm.

EXFF EXP R R 1 Exponential.

ATANF ATAN R R 1 Arctangent (result in
radians).

13:

II ST'D Number of
NAME NAME ARGUMENT RESULT ARGUMENTS DEFINITION

TANHF TAHH R R 1 Hyperbolic tangent.

AL0G1G R R 1 Base tin logarithm.

ATAN2 R R 2

Number of

Arctangent of (al/a2).

NAME ARGUMENT RESULT ARGUMENTS DEFINITION

Nonstandard functions allowed on BRLESC I/II:

XLOCF or LOG R or I I 1 Stores the address of al.

ATAN1 R R 2 Same as ATAN2.

ARCSIN R E Arcsine,

ARCCOS R R Arcosine.

ARCTAN R R Arctaogsnt (same as ATAN)

ARCCOT R R Arcotangent.

SINH R R Hyperbolic sine.

COSH R R Hyperbolic cosine.

TAN R R Tangent.

COT R R Cotangent.

SEC R R Secant.

CSC R R Cosecant.

FRAGT R R Fractional part of argu-
ment.

SIGN1 R or I R 1 -1.0,0., or 1.0 for
al < 0, = 0, > 0 respec-
tively.

Standard double precision functions allowed on BRLESC I/II with either

real or double precision (D) arguments:

Absolute value.

Convert double tc integer.

Chooses largest argument.

Chooses smallest argument.

Sign of a2 * | al | .

Convert double to real.

134

DABS D D 1

IDINT D I 1

DMAX1 D D :> 2

DMIN1 D D :> 2

DSIGN D D 2

SNGL D R 1

Nuinber of
NAME ARGUMENi RESULT ARGUMENTS

DBLE R D 1

DEXP D D 1

DLOG D D 1

DSQRT D D 1

DSIN D D 1

DCOS D D 1

BATAN D D 1

DATAN2 D D 2

DLOGIO D D i

DMOD D D 1

DEFINITION

Convert real to double.

Exponential.

Natural logarithm.

Square root.

Sine (argument in radians),

Cosine (argument in radians).

Arctangent (result in
radians).

Arctangent uf (al/a2).

Base ten logarithm.

al (mod a2).

135

APPENDIX P.. THREE EXAMPLES OP FORTRAN PROGRAMS

(PROGRAM,INPUT DATA, AND OUTPUT ARE LISTED)

*CS916, EXAMPLE 1. MULTIPLY ELEMENTS OF TWO VECTORS A*B

DIMENSION A(10),B(10),C(10)

2 FORMAT(5E14.3)

READ(5,2)A,B

DO 3 1-1,10

3 C(I)=A(I)*B<I)

WRITE(6,4)C

STOP

4 F0RMATQ6H VECTOR PR0DUCTS/(1H ,5E14.7))

END

* DATA

14.1 60.35 22.8 91.7 374.18

36.2 193.44 83.61 2.648 9.8

4.21 8.23 15.9 7.77 88.1

2.7 3.0 8.1118 19.1 42.44

JAN.9,70 BRLESC FORTRAN 2 AND 4

*CS916, EXAMPLE 1. MULTIPLY ELEMENTS OF TWO VECTORS A*B

VECTOR PRODUCTS

0.5936100E 02 0.4966805E 03 0.3625200E 03 0.71250S0E 03 0.3296526E 05

0.9774000E 02 0.5803200E 03 0.67?>2276E 03 0.5057680E 02 0.4159120E 03

136

*CS916, EXAMPLE 2. FIND SMALLEST NUMBER IN ARRAY F

DIMENSION F(20)

2 FORMAT(5E14.5)

READ(5,2)F

SMALL=F(1)

DO 9 J=2,20

IF (SMALL-F(J »9,9,8

8 SMALL=F(J)

9 CONTINUE

WRITE(6,3)SMALL

STOP

3 FORMAT(12H SMALLEST F=,F13.6)

END

* DATA

14.1 60.35 22.8 91.7 374.18

36.2 193.44 83.61 2.648 9.8

4.21 8.23 15.9 7.77 88.1

2.7 3.0 8.1118 19.1 42.44

JAN.9,70 BRLESC FORTRAN 2 AND 4

*CS916, EXAMPLE 2. FIND SMALLEST NUMBER IN ARRAY F

SMALLEST F= 2.648000

137

■" *CS916, EXAMPLE 22 FROM BRL REPORT 1209 COOED IN FORTRAN.

. C
C

USE BISECTION METHOD TO FIND ROOT OF F(X)»X**3-X-
(1,2)

;■

11 F0RMAT(1H ,5X,1HX,10X,4HF(X)/)

21 FORMAT(1H .1P2E15.7)

31 FORMAT(25H CONDITIONS NOT SATISFIED)

36»1.

Xl*2.

EPS«. 00001

j

ASSIGN 1 to K

WRITE(6,11)

44 F»X*(X*X-1.)-1.

WRHE(6,21)X,F

GOTOK,(1,4,7)

1 FO*F

IF(F.LT.O.)GOTO 2

15 XP»X

GOTO 3

2 XN»X

3 X«X1

ASSIGN 4 TO K

• GOTO 44

,
4 F1=F

IF(F.LT.0.)GOT0 5

- 45 XP-X

GOTO 6

: 5 XN=X

!

6 ASSIGN 7 to K

IF(FO*Fl)66,65,65
!

65 WRITE(6,31)
. 67 STOP

66 X=(XN+XP)/2.

GOTO 44

138

-

71

1"

IF(ABSF(F).I.T.EFS) GOTO 6

IF(F.LT.O.)GOTO 8

XP=X

GOTO 66

8 XN=X

GOTO 66

EOT

* DATA

TAN.9,70 BRLESC FORTRAN 2 AND ^

*CS916, EXAMPLE 22 FROM BRL REPORT 1209 CODED IN FORTRAN.

X F(X)

1.ÖQ00OCOE 00 -l.GOu&OOOE 00

2.0000000E 00 5.0000000E 00

1.500Ü000E 00 8./iü00Ü0E-01

1.2500000E 00 -2.9&87500E-01

1.375000US 00 2.2460938E-01

1.3125000E 00 -5.1513672E-02

1.3437500E 00 8.2611084E-02

1.3281250E 00 1.4575958E-02

1.3203125E 00 -1.8710613E-02

1.3242187E 00 -2.1279454E-03

1.3261719E 00 6.2088296E-03

1.3251953E 00 2.0366507E-03

1.3247070E 00 -4.6394883E-05

1.3249512E 00 9.9479097E-04

1.3248291E 00 4.7403882E-04

1.3247681E 00 2.1370716E-04

1.3247375E 00 8.3552438E-05

1.3247223E 00 1.8477852E-05

1.3247147E 00 -1.4058747E-05

139

APPENDIX C. SYMBOLIC AND SEXADECIMAL BRLESC I ORDER TYPES.

Key: a, 0, y primary addresses in three address instruction,

a, b, c index addresses respectively for a, 0, y.

effective addresses respectively,

contents of A, B, C respectively.

Action

x + y -* z

x - y -» z

x * y -♦ z

x/y -» z

Jump to C if x < y

Jump to C if x a y

/|x| -z

Shift x by B -» z (See shift code below.)

Transplant. Replace part of z with part of
x as specified by 1 bits in y and shifted

A, B, C

x, y, z

exa. Sym.

2 A

3 S

4 M

5 D

60 C or C-

62 C+

7 SQRT

8 SHX

9 TP

K B

S CB

S6 CEQ

N CNB

N6 CNEQ

J2 PMA

cyclic (not tags) Left 4* parameter.

Boolean. (See boolean table below.)

Jump to C if boolean result = 0.

Jump to C if x = y. Same as CB6.

Jump to C if boolean result ^ 0.

Jump to C if x / y. Same as CNB6.

Polynomial Multiply, x * y + z -» 0 (zero
register)

L IT Interpret. Own address -> 1, A-»4, B -• 5,
C -» 6 and jump to 040.

00 HALT Halt

01 SET or SI Set Indexes. a -» a, 6-»b, y-*c

02 INC or II Increase Indexes. A -» a, B-»b, C-»c

03 LP Loop. Jump to C if loop not yet done B times.

04 J Jump to C.

05 JS Jump to subroutine at C. Own address -* 1,
A - 2, B - 3.

140

Sexa. §IE- Action

06 J+

07 J-

08 TAPE or CARD

08 ZERO

09 SIJ

OK IIJ

OS EA

ON

18

JA

OJ JC

OF NOP

OL RSW

10 MMF

13 LPI

MMB

IN JNA

U JNC

IF MI or IM

1L RCL

Jump to C if x 2; 0.

Jump to C if x < 0.

I/O. Transfer B words from A according to y.

Clear B words beginning at A if y ■ 0807.

Set indexes, a -» a, ß -» b, and jump to C.

Increase indexes, A -» a, B -• b, and jump to C.

Effective addresses. A -* b and C -» ß where
ß must be an index address.

Jump to C if rightmost character of x is same
as 0.

Jump to C if condition specified by ß is on.

No operation.

Read 68 console switches into B words at A
and jump to C.

Move B memory words from A to C. A and C
are increased by 1 for each word.

Loop on index a. Jump to C if loop hasn't
been done B times after increasing contents
of a by 1.

Move B memory words from A to C. A and C
are decreased by 1 for each word.

Jump to C if rightmost character of x ^ ß.

Jump to C if condition specified by ß is off.

Integer multiply, x * y -» z.

Read clock into A and jump to C. B must be 1.

141

Boolean Operations

(For B, CB, and CNB orders.)

Key: * And

+ Inclusive or

x Complement of x
All words are 68 bits.

Dec.
Parameter

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Symbolic Parameters

(For A, S, M, D, C, SQRT, SH, PM
orders.)

Result

0

x * y

x * y

x

x * y

y

x * y + x * y (Excl.
or)

x + y

x * y (And)

x * y + x * y

y

x + y

x

x + y

x + y (Inclusive
or)

Svm.

X

A or +

V

R

Par. Bit

1 (0 for F)

2

4

8

Shift Code

(B of SHX order)

Sexa. Value

0 - 07L

080

0100

0200

0400

0800

01000

02000

Meaning

Amount of shift

Right shift

Clear right 8 bits
before shift

Cyclic shift

Round

Include sign and
tags

Logical shift

Double Length

142

V of I/O Orders

Let Y - C3C2C1 where each C is one sexadecimal digit.

Cl Sexa.

3 or 5

4 or 2

S or J

N or K

C2 . Sexa

1-L

Meaning

Read characters from
tape.

Write characters on
tape.

Read binary tape.

Write binary tape.

Tape unit number.

C3 Sexa. for Tape Reading

0 Read one block.

2 Move forward by blocks.

3 Move backward by blocks.

5 Rewind.

6 Rewind and Unload.

7 Move backward by file marks,

8 Move forward by file marks.

C3 Sexa. for tape writing

1

2

3

4

5

Prepare for writing and write a file mark. (Not needed for
1/2" tapes.)

Write one block.

Write file mark and prepare to read. (Not needed for 1/2"
tapes.)

Erase backward one block or one file mark. (Not allowed for
1/2" tapes.)

Erase forward to leave a blank gap. (Not allowed for 1/2"
tapes.)

Write a file mark.

See BRL Memorandum Report No. 1379 for additional information on

the BRLESC I instruction code.

143

APPENDIX D. SYMBOLIC AND SEXADECIMAL BRLESC II ORDER TYPES.

Key M Memory Contents R R Register Contents

A Accumulator Contents D D Register Contents

EA Effective Address 1 Integer One.

F Leading F on Symbolic indicates fl. pt. operation.

I Index Register for indexing the next order.

Sex». Sym. Action Sexa S^m. Action

00 32 EA- A = -EA

02 +1 A - M-l 34 0U' A ■ 0 and Jump

04 (-) A = A-M 36 EA(+) A = A+EA

06 F(-)

RS -t

A =

.t
IS

A-M 38

3K

LS0

ANDM

A = 0, then do LSD

08 M » A = A A M X
OK RSL<f s>

3N I * I = M

ON A(-) A = A-R 3F IRP I ■ EA for Repeat
OF EA(-) A = A-EA 40 C Jump if A ä 0

10 M M = A(65 bits) 42 c- Jump if A < 0

12 FM M = A 44 -HV A - A-] M |

14 U' Jump to right order 46 F-HV A = A-| M |

16 Mil

LS -

LSD L

LSC «=

11

I - A-l
*

48

4K

4N

4F

50

LM

A+LM

A+M

E"

M = A(68 bits)

18
r

M = A = R(68 bits) J»W ~>b *

IK — ...— -y_ ---.. -.» M = A = R(65 bits)

IN

I =

J23

IF M-l Set right add.

20 C Jump if A ä 0 52 PJE1 Set return add.

22 C- Jump if A < 0 54 M-A A = M-A

24 - A - -M 56 FM-A A = M-A

26 F-

RSC *-

IORM

A = -M
\

58

5K

5N

-A

F-A

SQRT

A = -A

28 s-> A = -A

2K M = A = AvM A = /F
2N A- A = -R 5F FSQRT A = /I*
2F 60 CZ Jump if A = 0

30 OM M = A = 0 62 CNZ Jump if A ^ 0

144

Sexa. Sym. Action Sexa. Sym. Action

64 1-1 A = -|M | 9F Set Timer.

66 F 1-1 A = -|M| K0 OU A = 0 and Jump.

68 K2 EA+ A = EA

6K K4 + A ■ M(65 bits)

6N A 1-1 A- Ha| K6 F+ A - M

6F K8 XU A,R = A*M

70 0E' A = 0 and do E'. KK U- A = M(68 bits)

72 PPJE1 Set return add. KN A+ A = R

74 KF

76 SO IM M = A - 1

78 / A = A/M S2 K+)M M - A = M+l

7K F/ A = A/M S4 R R = M(65 bits)

7N /A A = M/A S6 FR R = M

7F F/A A = M/A S8 IX A = A*M(Integers)

80 CZ' Jump if A ■ 0 SK LR R - M(68 bits)

82 CNZ1 Jump if A ^ 0 SN u* Jump to Subroutine.

84 +HV A - A + | M | SF EXC Do Drders at M.

86 F+HV A = A + | M | NO U Jump

88 EOR A - AAMvX/VM N2 NOT A = M

8K IOR A = AVM N4 (+) A = M+A

8N 'A' A = D N6 F(+) A = M+A

8F RPE' Save repeat count
n-i.

N8

90 E Set left add. NK ANDN A = AAM

92 RPB Repeat; Adv. all
adds.

NN A(+) A - A+R

94 RSW A = Switches. NF EAX A = A*EA(Integers)

96 RPR Repeat; Adv. right
adds.

JO (-)M M * A = A-M

98 (+)M M = A = A+M J2 F(-)M M - A = A-M

9K F(+)M M = A = A+M J4

9N RCLK M ■ Clock, J6

145

Sexa. Sym.

XA

Action

A = A*M

Sexa.

LO

Sym.

OE

Action

J8 A -■ 0 and do E.

JK FXA A = A*M L2 IOS I/O Select

JN COV Jump if Overflow. L4 SIA I/O Initial Address

JF COV Jump if Overflow. L6 SFA I/O Final Add. + 1

FO ZX Cond. Halt L8 SDA Set Disc Address

F2 NOP No Operation. LK

F4 1+1 A-|M| LN HALT Stop

F6 F 1+1 A-|M| IF

F8 RER R ■ Error bits.

FK AND A = AAM

FN A 1+1 A-|R|

FF SKIP NOP, I not used.

Notes;

(1) Jump orders that contain the

right half of a word.

character always jump to the

(2) The following symbolic orders all cause a "secondary transfer

of control" when they have a non-zero address:

A(-), A-, -A, F-A, SQRT, FSQRT, Al-1, 'A', A+, A(+), ZX and

Al+1.

Such orders cause a jump to the left half of the specified

non-zero address after the execution of any orders that follow

these orders in the same word. The address of these orders

should normally be omitted so that it will be zero.

146

APPENDIX E. ARDC PRINTER CHARACTERS

DEC. CARD BIT DEC. CARD BIT
EQUIV . CODE CODE CHAR. EQÜIV. CODE CODE CI

0 blank 00 0000 blank 32 11 10 0000 -

1 1 00 0001 1 33 11-1 10 0001 J

2 2 00 0010 2 34 11-2 10 0010 K

3 3 00 0011 3 35 11-3 10 0011 L

4 4 00 0100 4 36 11-4 10 0100 M

5 5 00 0101 5 37 11-5 10 0101 N

6 6 00 0110 6 38 11-6 10 0110 0

7 7 00 Olli 7 39 11-7 10 Olli p

8 8 00 1000 8 40 11-8 10 1000 Q
9 9 00 1001 9 41 11-9 10 1001 R

10 2-8 00 1010 & 42 11-2-8 10 1010 i

11 3-8 00 1011 = 43 11-3-8 10 1011 $

12 4-8 00 1100 i 44 11-4-8 10 1100 *

13 5-8 00 1101 : 45 11-5-8 10 1101]
14 6-8 00 1110 > 46 11-6-8 10 1110 >

15 7-8 00 1111 ii 47 11-7-8 10 1111 t
16 12 01 0000 + 48 0 11 0000 0

17 12-1 01 0001 A 49 0-1 11 0001 /

18 12-2 01 0010 B 50 0-2 11 0010 s
19 12-3 01 0011 C 51 0-3 11 0011 T

20 12-4 01 0100 D 52 0-4 11 0100 U

21 12-5 01 0101 E 53 0-5 11 0101 V

22 12-6 01 0110 F 54 0-6 11 0110 w
23 12-7 01 Olli G 55 0-7 11 Olli X

24 12-8 Ul 1000 H 56 0-8 11 1000 Y

25 12-9 01 1001 I 57 0-9 11 1001 Z

26 12-2-8 01 1010 ? 58 C-2-8 11 1010 +-

27 12-3-8 01 1011 • 59 0-3-8 11 1011 5

28 12-4-8 01 1100) 60 0-4-8 11 1100 (

29 12-5-8 01 1101 [61 0-5-8 11 1101 %

30 12-6-8 01 1110 < 62 0-6-8 11 1110 \

31 12-7-8 01 1111 # 63 0-7-8 11 1111 @

CHAR.

147

fB'JM.'JRjJViW*'.■'.' ^V';

Bit codes 01 1111(#) and 11 1111 (Q>) are used as end-of-line and

ignore characters respectively for variable length lines.

146

-»

APPENDIX F. LISTING OF FORTRAN SUBPROGRAM CARD DECKS AVAILABLE FROM
SYSTEMS PROGRAMMING,BLDG.328, RM 213, APG.MD.

KEY TO STAF. NO. FIELD, (I) INDICATES INPUT ARG., CALLING PROG. SUPPLIES VALUE
(R) INDICATES RESULT. SUBPROGRAM STORES VALUE THERE.
(T) INDICATES TEMPORARY STORAGE.
(IR) INDICATES ARGUMENT USED AS INPUT AND RESULT.
(F) INDICATES ARG. USED AS A FUNCTION NAME.
(S) INDICATES ARG. USED AS A SUBROUTINE NAME.
(U) INDICATES ARG. WITH UNUSUAL USAGE.

IMPLIED TYPE OF OUMMY ARG. IS REQUIRED TYPE OF ACTUAL ARG., EXCEPT WHERE NOTED.

IMPORTANT BRLESC 1 RESTRICTIONS, (DO NOT APPLY TO BRLESC 2)
(1) NO. OF DIMENSIONS MUST BE THE SAME BETWEEN ACTUAL AND DUMMY ARGUMENTS.
(2» OUMMY ARRAY ARG. MUST HAVE ACTUAL ARG. OF JUST ARRAY NAME (NO SUBSCRIPT».

FUNCTION SIGN1JX) SIGN1 I
C SIGN1(X)=-1. FOR X.LT.O., 0. FOR X=0., AND +1. FOR X.GT.O. SIGN1
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEDED ELSEWHERE.

JUNCTION FACTRLU) FACTRL 1
C PRODUCES REAL FACTORIAL OF »NTEGER ARGUMENT. FACTRL

FUNCTION SINH(X) SINH 01
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEDED ELSEWHERE.

FUNCTION COSH(X) COSH 01
C IS ALSO PREDEFINED ON BRLESC .1/2. CARDS ONLY NEEDED ELSEWHERE.

FUNCTION TAN(X) TAN 01
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEDED ELSEWHERE.

FUNCTION COT(X) COT 01
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEDED ELSEWHERE.

FUNCTION SEC(X) SEC 01
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEDED ELSEWHERE.

FUNCTION CSC(X) CSC 01
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEDED ELSEWHERE.

FUNCTION ARCCOT(X) ARCCOT 1
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEDED ELSEWHERE.

FUNCTION ARCSIN(X) ARCSIN 1
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEOED ELSEWHERE.

FUNCTION ARCCOS(X) ARCCOS 1
C IS ALSO PREDEFINED ON BRLESC 1/2. CARDS ONLY NEEDED ELSEWHERE.

149

■

REAL FUNCTION NDF(X)
C NORMAL DISTRIBUTION FUNCTION.
C NEED REAL NOF STATMENT IN CALLING PROGRAM.

NDF
NDF
NDF

FUNCTION ERF(X)
NORMAL DISTRIBUTION FUNCTION. SAME AS NDF AND FORAST N.D.F.

ERF
ERF

FUNCTION FINVND«X)
C INVERSE OF THE NORMAL DISTRIBUTION FUNCTION , NDF.
C HANDBOOK OF MATH FUNCTIONS BUREAU OF STANDARDS PG.933 26.2.23

FINVND 1
FINVND
FINVND

FUNCTION URAN3KI) URAN31 1
GENERATES UNIFORM RANDOM NUMBER t 0. TO 1. URAN31

C IU) I MUST BE INTEGER VARIABLE, NOT A CONSTANT. URAN31
C MUST USE 1=0 INITIALLY. MAY USE 1=0 TO RESTART SEQUENCE. URAN31
C OTHERWISE I SHOULD NOT BE CHANGED OUTSIDE OF URAN31. URAN31
C URAN31 MILL WORK ON ANY COMPUTER THAT USES AT LEAST 31 BIT URAN31
C INTEGER ARITHMETIC FOR POSITIVE INTEGERS. IT WILL URAN31
C PRODUCE THE SAME SEQUENCE OF NOS. ON ALL SUCH COMPUTERS. URAN31

SUBROUTINE NRAN31IXI,X2,I) NRAN31 1
GENERATES NORMAL RANDOM NUMBERS (TWO PER ENTRY) WITH A NRAN31

MEAN OF ZERO AND A STANDARD DEVIATION OF ONE. NRAN31
C (R) XI IS RANDOM NUMBER. NRAN31
C (R) X2 IS ANTOHER RANDOM NUMBER. NRAN31
C (U) I MUST BE INTEGER VARIABLE. IS ONLY USED AS ARGUMENT FOR URAN31. NRAN31

C (I)
C (I)
C (S)
C
CUR»
C (R)
C (T)
C (I)
C
C

(I)
(R>
(I)
(I)
(I)
(I)

SUBROUTINE RKG(DELTA,N,DERIV,Y,DY,Q,JI
RUNGE-KUTTA-GILL METHOD. SOLVES SYSTEM OF ORD. DIFF. EQS.

DELTA IS THE STEP SIZE.
N IS THE NUMBER OF VARIABLES (INCLUDING INDEPENDENT VARIABLE)
DER1V IS THE NAME OF A SUBROUTINE THAT COMPUTES THE DERIVATIVES.

TWO ARGS. SUBROUTINE DERIV(Y.DY)
Y IS A 1 DIM. ARRAY CONTAINING THE VARIABLES (N OF THEM).
DY IS A CORRESPONDING 1 DIM. ARRAY OF DERIVATIVES »N OF THEM».
0 IS A 1 DIM. ARRAY OF CORRECTION TERMS (N OF TKcM).
J IF J=l (INITIAL ENTRY), THE Q ARRAY IS CLEARED

AND RETURN IS EXECUTED IMMEDIATELY AFTER COMPUTING
INITIAL DERIVATIVES.

SUBROUTINE OVDINT(X,FX,XT,FT,NP,ND)
DOES DIVIDED DIFFERENCE INTERPOLATION.

X IS ARGUMENT FOR WHICH FUNCTIONAL VALUE IS DESIRED.
FX IS NAME OF THE RESULT.
XT IS ARRAY OF X VALUES.(1 DIMENSIONAL)
FT IS ARRAY OF FUNCTIONAL VALUES.(1 DIMENSIONAL)
NP IS THE NUMBER OF VALUES IN XT AND FT ARRAYS.
ND IS THE NUMBER OF POINTS TO USE FOR EACH INTERPOLATION.

RKG
RKG
RKG
.RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG

DVDINT
DVDINT
DVDINT
DVDINT
DVDINT
DVDINT
DVDINT
DVDINT

C
C
C
C
C
r
C
C
C
C

(I)
(R)
(I)
(I)
(I)
(I)
(I)
(I)

SUBROUTINE MATMPYIA,B,C,I,J,K,L,M,N)
MATRIX MULTIPLY. C(I,K)=A(I,J)*B(J,K)

A,B ARE MATRICES (2 DIM.) TO BE MULTIPLIED.
IS RESULT, C(ItK)=A(I,J)*B(J,K)

IS NO. OF ROWS IN A.
IS NO. OF COLS. IN
IS NO. OF COLS. IN
IS DECLARED (MAX.)
IS DECLARED (MAX.)
IS DECLARED (MAX.)
REST OF RESULT C

A AND NO. OF ROWS IN B.
B.
NO. OF ROWS IN A.
NO. OF ROWS IN B.
NO. OF ROWS IN C.
IS NOT SET TO ZERO.

150

MATMPY
MATMPY
MATMPY
MATMPY
MATMPY
MATMPY
MATMPY
MATMPY
MATMPY
MATMPY
MATMPY

" ""H>, ■-.

C
CUR;
cm
C (R)
cm
C (I)
c
c
c
c
c
c
c

(R)

SUBROUTINE MATINV<A,N,C,NMAX,K,DET) MATINV
MATRIX INVERSION. A=A**(-1) MATINV

A IS THE MATRIX AND IS REPLACED BY ITS INVERSE. MATINV
N IS THE DIMENSION OF THE MATRIX. MATINV
r IS USED ONLY WHEN K=l AS DESCRIBED BELOW. MATINV
MAX IS THE MAX. NO. OF ROWS OF A AS DECLARED. MATINV
K DESCRIBES OPTIONS. K=0 MEANS AN N X N MATRIX.K=l MEANS MATINV

AN N X N MATRIX AND A SINGLE VECTOR AI C.ITHE SOLUTION MATINV
VECTOR REPLACES THE C VECTOR). K>=2 MEANS AN N X (N+K-l) MATIN'
MATRIX. (THE (K-U VICTORS ARE REPi.AC.ED BY THE (K-l) MATINV
SOLUTION VECTORS). MATINV

DET IS THE VALUE OF THE MATRIX DETERMINANT. MATINV
WHEN A IS SINGULAR, AN ERROR PRINT AND RETURN WITH THE MATINV
VALUE OF DET SET TO ZERO IS EXECUTED. MATINV

SUBROUTINE MATMPT«A,B,C,I,J,K,MRA,MRB,MRC,NA,NB,NC) MATMPT I
MULTIPLICATION OF MATRICES OR THEIR TRANSPOSES. MATMPT

(I) A,B ARE MATRICES (2 DIM.) TO BE MULTIPLIED. MATMPT
IR) C IS RESULT» C(I ,K)=A(I,J)*b(J,K) MATMPT
(I) I,J,K ARE THE DIMENSIONS OF THE MATRICES AS THEY ARE TO BE USED. MATMPT 2

(J IS ALWAYS THE COMMON DIMENSION). MATMPT 2
(I) MRA,MRB,MRC ARE THE MAX. NO. OF ROWS OF A,B,C RESPECTIVELY MATMPT 2

AS DECLARED. MTMPT 2
(I) NA,N8,NC ARE OPTIONS TO BE APPLIED TO A,B,C RESPECTIVELY. MATMPT I

NA.NB.OR NC=0 MEANS TO USE THE RESPECTIVE MATRIX AS IS. MATMPT 2
NA.NB, OR NC=1 MEANS TO USE THE TRANSPOSE OF THE RESPECTIVE MATMPT 2

STORED MATRIX.I,J,K ARE THEN THE DIMENSIONS OF THE TRANSPOSE.MATMPT 2
NC=4 MEANS TO ACCUMMULATE.(C = A X B + C) MATMPT 2
NC=5 MEANS C = (A X B)' + C MATMPT I

SUBROUTINE FNEQS«A,N,C»NMAX,W) FNEQS 1
FORM NORMAL EQUATIONS (FULL N X (N+l) MATRIX). FNEQS 2
A IS THE MATRIX OF NORMAL EQUATIONS BEING FORMED. FNEQS 2

A MUST BE CLEARED TO ZEROS BEFORE FIRST CALL OF FNEQS. FNEQS
IS THE NO. OF TERMSIEXCLUDING FUNCTIONAL VALUE). FNEQS 2
IS A VECTOR CONTAINING THE TERMS OF THE EQUATION INCLUDING FNEQS 2
THE FUNCTIONAL VALUE AS THE LAST TERM. FNEQS 2

(I) NMAX IS THE MAX. NO. OF ROWS OF A AS DECLARED. FNEQS 2
(I) W IS THE WEIGHT TO BE APPLIED TO THIS EQUATION. FNEQS 2

(R)

(I) N
(I) C

(F)

(R)
(I)
(I)
(I)

C
C
c
c
c
c
c
c
c
c
c
C(IR)
c
c
c
c
c
c

SUBROUTINE SIMSON(FUN,RESULT,A,B,EPS,IJ
USES SIMPSONS METHOD TO COMPUTE INTEGRAL OF A

FUN IS AN EXTERNAL FUNCTION THAT COMPUTES THE FUNC
FOR A GIVEN ARGUMENT.(AN EXTERNAL STATEMENT
NECESSARY IN THE CALLING PROGRAM.)

RESULT IS THE RESULTING VALUE OF THE INTEGRAL.
A IS THE LOWER LIMIT OF INTEGRATION.
B IS THE UPPER LIMIT OF INTEGRATION.
EPS IS THE RELATIVE ERROR BOUND.(I.E. 10**(-5) GIV

ACCURRACY). IF THE VALUE OF I IS ZERO INIT
PRINT AND STOP WILL BE EXECUTED WHENEVER

SATISFIED BY USING THE MAXIMUM NUMBER OF PO
I IF I.NE.O INITIALLY, THE VALUE OF I

WILL BE CHANGED BY THE SUBROUTINE AND SET TO
1=1 IF EPS WAS SATISFIED,
1=2 IF EPS WAS NOT SATISFIED BUT BOTH THE VALUE 0

INTEGRAL AND THE ABSOLUTE ERROR < EPS.
1=3 IF EPS WAS NOT SATISFIED AND INTEGRAL > EPS >
1=4 IF EPS WAS NOT SATISFIED AS A RELATIVE OR ABS

151

FUNCTION.
TIONAL VALUE
IS

ES 5 DIGIT
IALLY, AN ERROR
EPS IS NOT
INTSJ8192).

THE FOLLOWING—

F THE

ABSOLUTE ERROR
. ERROR BOUND.

SIMSON
S1MSON
SIMSON
SIMSON
SIMSON
SIMSCN
SIMSON
SIMSON
SIMSON
SIMSON
SIMSON
SIMSON
SIMSON
SIMSON
SIMSON
SIMSON
SIMSON
.SIMSON
SIMSON

SUBROUTINE FNMIN(N,X,FX,FUN,E,EPS,K) FNMIN 1
C FINDS MINIMUM OF A FUNCTION OF MORE THAN ONE VARIABLE. FNMIN
C (I) N IS THE NUMBER OF VARIABLES. N<11 UNLESS CHANGE DIMENSION STATS. FNMIN 2
CUR» X Ii A LINEAR ARRAY CONTAINING THE INITIAL ESTIMATES OF THE N FNMIN 2
C VARIABLES AND AT RETURN CONTAIN THE VALUES AT THE MINIMUM. FNMIN 2
C (R) FX IS WHERE THE FUNCTIONAL VALUE AT THE MINIMUM MILL BE STORED. FNMIN 2
C (F> FUN IS THE NAME OF A FUNCTION OF 2 ARGUMENTS-~FUN<X,N)-~THAT FNMIN 2
C COMPUTES THE VALUE OF THE FUNCTION AT X. (AN EXTERNAL FNMIN 2
C STATMENT IN THE CALLING PROGRAM IS NECESSARY). FNMIN 2
C (I) E IS THE NAME OF A SCALAR WHICH IS USED TO DEFINE THE INITIAL FNMIN 2
C TRIAL STEP AND THE INITIAL BOUND FOR THE CHANGE IN EACH FNMIN 2
C VARIABLE. E>1. (DELX(I)) INITIAL=E*EPS<I) AND FNMIN 2
C (ÜELXU) »MAX. INITIAL=20*(E*EPSU)). FNMIN 2
C (I) EPS IS A LINEAR ARRAY OF N EPSILONS DEFINING THE ACCURACY FNMIN 2
C DESIRED IN EACH OF THE VARIABLES. FNMIN 2
CUR) K IF K=0 INITIALLYt AN ERROR PRINT AND HALT WILL BE FNMIN 2
C EXECUTED WHENEVER CONVERGENCE WITHIN EPS HAS NOT BEEN FNMIN 2
C ACHIEVED AFTER 20*N ITERATIONS.IF K IS NOT ZERO INITIALLY, FNMIN 2
C RETURN IS EXECUTED UPON CONVERGENCE WITH K SET TO 1, FNMIN 2
C OR AFTER 20*N ITERATIONS WITH K SET TO 2. FNMIN 2

SUBROUTINE FDMIN1N,X,DX,F,SUB,D,EPS,EPS1,K) FDMIN 1
C FINDS MINIMUM OF A FUNCTION, USES DERIVATIVES. FLMIN
C MUST BE FUNCTION OF MORE THAN ONE VARIABLE, I.E. N.GT.l .
C (I) N IS THE NUMBER OF INDEPENDENT VARIABLES IN THE FUNCTION TO FDMIN 2
C BE MINIMIZED.N<11 UNLESS DIMENSION STATEMENTS ARE MODIFIEO. FLMIN 2
CUR) X IS THE LINEAR ARRAY OF VARIABLES. INITIALLY CONTAIN THE FDMIN 2
C ESTIMATES OF THE VALUES AT THE MINIMUM.AT RETURN FDMIN 2
C CONTAIN THE FINAL VALUES. FDMIN 2
C (T) DX IS A LINEAR ARRAY CONTAINING THE VALUES OF THE N PARTIAL FDMIN 2
C DERIVATIVES OF THE FUNCTION EVALUATED AT X BY THE SUB FDMIN 2
C PROGRAM.NO INITIAL VALUES REOUIRED. FDMIN 2
C (R) F CONTAINS THE VALUE OF THE FUNCTION AT RETURN. FDMIN 2
C IS» SUB IS THE NAME OF A SUBROUTINE—-SUB(N,X,F,DX)— THAT COMPUTES FDMIN 2
C THE FUNCTIONAL VALUE (F) AND DERIVATIVES (DX). FDMIN 2
C (I) D IS AN ESTIMATE OF THE IMPROVEMENT IN THE VALUE OF THE FUNCTION. FDMIN 2
C WHEN D=0, ROUTINE ASSUMES THE MIN. VALUE IS NEAR 0. FDMIN
C (I) EPS IS THE ACCURACY DESIRED IN THE FUNCTION VALUE. FDMIN 2
C U) EPS1 IS A CONDITION ON THE INDEPENDENT VARIABLES. FDMIN 2
C ABS(DELTAXU))/ABS(XU)XEPS1. IGNORED IF EPS1 VALUE =0. FDMIN 2
CUR) K IF K IS INITIALLY ZERO, AN ERROR PRINT AND STOP WILL BE FDMIN 2
C EXECUTED WHEN FUNCTION IS NOT CONVERGING.IF K IS NOT ZERO FDMIN 2
C INITIALLY,RETURN IS EXECUTED WITH K SET TO 1 WHEN FDMIN 2
C CONVERGENCE IS SATISFIED OR K SET TO 2 WHEN THERE IS NOT FDMIN 2
C CONVERGENCE. FDMIN 2

SUBROUTINE BESSEL (X, BF) BESSEL 1
C COMPUTES FIRST 3 BESSEL FUNCTIONS OF FIRST AND SECOND KIND. BESSEL
C (I) X IS ARGUMENT. BESSEL
C (R) BF IS LINEAR ARRAY FOR RESULTS JO,Jl,J2,Y0,Y1,Y2. BESSEL

152

c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE RMBGIN (FX, F
USeS ROMBERG METHOD

(F) FX IS NAME OF FUNCTION
THE VALUE OF THE

U) FI IS WHERE THE INTEGRA
(I) LL IS THE REAL LOWER LI
(II LL IS THE REAL UPPER LI
(I) TOL IS THE RELATIVE ERRO

I.E. 10**(-5) GIV
U> PC IF PC=G, NO WRITING

IF PC.NE.O, RESULTS
WILL GIVE ERROR L
AFTER TEN STEPS.

I. LL, UL, TOL, PC»
TO COMPUTE INTEGRAL OF A FUNCTION.
SUBPROGRAM--FX(X)-~THAT COMPUTES
FUNCTION AT X.
L VALUE WILL BE STORED.
MIT OF INTEGRATION.
MIT OF INTEGRATION.
R TO BE ALLOWED IN THE RESULT,
ES 5 DIGIT ACCURACY.
IS DONE AT EACH STEP.
OF EACH STEP WILL WRITE ON TAPE 6.
INE OUTPUT AND STOP ITERATING
THEN DOES RETURN WITH THAT RESULT.

RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN
RMBGIN

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

(I)
(I)
(I)
(I)
(T)
(I)
(I)
(R)
(R)
(R)
(P.)
U)

(R)
(R)
(I)

SUBROUTINE GENLSQ(X,NRX,F,M,A,NRA,N,C,R,AF,ERMS,SIG.T.DET,IC)
USES FNEQS AND MATINV SUBROUTINES.(MUST INCLUDE CARDS.)

A MATRIX OF TERMS OF EQUATIONS. X
NRX
F
M
A
NRA
N
C
R
AF

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

NUMBER OF ROWS IN X.
A VECTOR OF FUNCTION VALUES FOR EQUATIONS.
NUMBER OF EQUATIONS.
A MATRIX OF AT LEAST (N)X(N+1),IS REPLACED BY INVERSE.
NUMBER OF ROWS IN A.
NUMBFR OF TERMS NOT INCLUDING FUNCTION VALUE, N.LE.99 .
A VECTOR FOR N
A VECTOR FOR M
A VECTOR FOR M

ERMS IS THE ROOT MEAN
SIG IS A VECTOR FOR N

SIG IS INVERSE

COEFFICIENTS.
RESIDUALS.
APPROXIMATE FUNCTIONS.
SQUARE ERROR,EQUALS ZERO IF M.LE.N.
SIGMAS.

ELEMENT IF INV. ELEMENT IS NEGATIVE.
T IS A VECTOR FOR N T VALUES.
DET IS THE VALUE OF THE DETERMINANT.
IC IS THE CONTROL—

IC IS 0 COMPUTE EVERYTHING.
IC IS 1 COMPUTE ONLY COEFFICIENTS.
IC IS 2 COMPUTE EVERYTHING EXCEPT RESIOUALS AND APPROXIMATIONS
IC IS 3 COMPUTE EVERYTHING EXCEPT APPROXIMATIONS.

GENLSQ 1
GENLSQ
GENLSC
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
GENLSQ
.GENLSQ
GENLSQ

SUBROUTINE POLYLS(X,F,M,A,NRA,N,C,R,AF,ERMS,SIG,T,DET,IC) POLYLS 1
C USES FNEQS AND MATINV SUBROUTINES.(MUST INCLUDE CARDS.) POLYLS
C (I) X IS A VECTOR OF INDEPENDENT VARIABLE. POLYLS
C (I) F IS A VECTOR OF FUNCTION VALUE* FOR POLYNOMIALS. POLYLS
C (I) M IS NUMBER OF POLYNOMIALS POLYLS
C (T) A IS THE MATRIX OF AT LEAST (N+l)X(N+2),IS REPLACED BY INVERSE POLYLS
C (I) NRA IS NUMBER OF ROWS IN A POLYLS
C (I) N IS DEGREE OF POLYNOMIAL, N.LE. 99 POLYLS
C (R) C IS VECTOR FOR (N+l)COEFFICIENTS POLYLS
C (R) R IS VECTOR FOR M RESIDUALS POLYLS
C (R) AF IS VECTOR FOR M APPROXIMATE FUNCTIONNS POLYLS
C (R) ERMS IS THE ROOT MEAN SQUARE ERROR,ZERO IF M.LE.N+1 POLYLS
C (R) SIG IS A VECTOR FOR N+l SIGMAS. PO<YLS
C SIG IS INVERSE ELEMENT IF INV. ELEMENT IS NEGATIVE. POLYLS
C (R) T IS A VECTOR FOR N+l T VALUES. POLYLS
C (R) DET IS THE VALUE OF THE DETERMINANT. POLYLS
C (I) IC IS THE CONTROL— POLYLS
C IC IS 0 COMPUTE EVERYTHING. POLYLS
C IC IS 1 COMPUTE CNLY COEFFICIENTS. POLYLS
C IC IS 2 COMPUTE EVERYTHING EXCEPT RESIDUALS AND APPROXIMATIONSPOLYLS
C IC IS 3 COMPUTE EVERYTHING EXCEPT APPROXIMATIONS. POLYLS

153

SUBROUTINE KUTMER(DNXT,DPST,DMAX,N,Y,YP.DER IV,ER,ME,W.ITYP.PS,
I PV,PRIN,TC,NTC,NTS,TERM)

SOLVES SYS. OF ORD. DIFF. EQS. USES KUTTA-MERSON METHOD.
DNXT STEP SIZE TO BE USED FOR NEXT STEP. THE SIGN OF DNXT HILL

DETERMINE THE DIRECTION OF INTEGRATION. DNXT MUST .NE. 0.
DPST THE STEP SIZE USED FOR THE STEP TAKEN LAST.
OMAX ABSOLUTE VALUE OF THE MAXIMUM STEP SIZE TO EE USED.
N NUMÖER OF EQUATIONS TO BE INTEGRATED. N MUST INCLUDE

THE INDEPENDENT VARIABLE. MUST HAVE N. LE. 50
Y ONE DIMENSIONAL ARRAY OF LENGTH N WHICH CONTAINS THE

INTEGRALS. ONE OF THE ELEMENTS OF Y MUST BE THE IND. VAR.
YP ONE DIMENSIONAL ARRAY OF LENGTH N WHERE THE DERIVATIVES

ARE STORED BY ROUTINE DERIV. THE ELEMENTS OF YP MUST BE
THE DERIVATIVE OF THE CORRESPONDING ELEMENT OF Y.

(S) DERIV SUBROUTINE WHICH COMPUTES THE DERIVATIVES YP. THE FIRST
STATEMENT MUST BE OF THE FORM SUBROUTINE DERIV(Y,YP).
Y AND YP MUST BE DECLARED ONE DIMENSIONAL ARRAYS IN DERIV
THE ACTUAL NAME MUST APPEAR IN AN EXTERNAL STATEMENT.

(I) ER IF ER = 0. DO NOT ADJUST THE STEP SIZE.
IF ER .NE. 0. ADJUST THE STEP SIZE SO THAT THE MAXIMUM
ERROR WILL BE APPROXIMATLY ER.

(I) ME IF ME = 1 USE ABSOLUTE ERROR TO COMPUTE THE NEW STEP SIZE.
IF ME = 2 USE ABSOLUTE ERROR TO COMPUTE THE NEW STEP SIZE

IF THE INTEGRALS ARE .LE. 1.. AND USE RELATIVE
ERROR TO COMPUTE THE NEW STEP SIZE IF THE
INTEGRALS ARE .GT. 1..

IF ME = 3 USE THE WEIGHTS STORED IN ARRAY W ALONG WITH TH
ABSOLUTE AND RELATIVE ERRORS TO COMPUTE THE NEW
STEP SIZE.

ONE DIMENSIONAL ARRAY OF LENGTH 2*N TO USE WHEN ME = 3.
w IS NOT USED WHEN ME = 1 OR Z (BUT MUST BE SPECIFIED).

ITYP IF ITYP =0 RETURN FROM KUTMER WHEN SOME TC HAS CHANGED SIGN
IF ITYP .GT. 0 THE VARIABLES FOLLOWING ITYP ON THE DUMMY
VARIABLE LIST ARE NOT USED «BUT MUST BE SPECIFIED).

IF ITYP = 1 RETURN FROM KUTMER AFTER THE INITIAL DERIVATIV
HAVE BEEN COMPUTEO.

IF ITYP .GT. 1 RETURN FROM KUTMER AFTER EACH STEP. THE
INTEGRALS HAVE BEEN EVALUATED USING THE VALUES OF THE
INTEGRALS AT THE END OF THE STEP.

PS PRINT STEP. MUST HAVE PS .GT. 0. (SEE PRIN),
PV PRINT VARIABLE. MUST BE DEFINED IN SUBROUTINE TERM (SEE PRI
PRIN PRINT (OR STORE) SUBROUTINE. PRIN WILL BE REFERENCED

1) AFTER THE INITIAL DERIVATIVES HAVE BEEN COMPUTED.
2) PV HAS CHANGED BY THE AMOUNT PS.
3) SOME TC HAS CHANGED SIGN.
THE FIRST STATEMENT MUST BE OF THE FORM
SUBROUTINE PRIN (Y,YP). Y AND YP MUST BE ARRAYS IN PRIN.
THE ACTUAL NAME MU"iT APPEAR IN AN EXTERNAL STATEMENT.

ONE DIMENSIONAL ARRAY OF LENGTH NTf. THE ELEMENTS OF TC

L
CUR)
C
C (R)
C (I)
C (I)
c
C(IR)
C
C (R)
C
C
C
C
C
C
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

(I) w

(I)

(I)
(T)
(S)

(T) TC
MUST BE COMPUTEO IN SUBROUTINE lERM. KUTMER WILL RETURN
WHEN TC(NTS) CHANGES SIGN. '

(I) NTC THE NUMBER OF ELEMENTS OF TC COMPUTED IN SUBROUTINE TERM.
NTC MUST BE .LE. 25 OR THE PROGRAM MUST BE CHANGED.

(R) NTS THE SUBSCRIPT OF THE TC WHICH CHANGED SIGN AND CAUSED
TERMINATION OF INTEGRATION.

(S) TERM TERMINATION ROUTINE. TERM IS REFERENCED AT THE END OF EACH
INTEGRATION STEP. IT MUST DEFINE PV AND THE FIRST NTC
ELEMENTS OF TC. THE FIRST STATEMENT MUST BE OF THE FORM
SUBROUTINE TERM«Y,YP,TC,PV). Y, YP AND TC MUST BE ARRAYS.
ACTUAL ARG. MUST BE IN EXTERNAL STAT. IN CALLING PROGRAM.

154

KUTMER
KUTMER
KUTMER
KUTMER

. KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER

. KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER

E KUTMER
KUTMER
KUTMER
KUTMER
KUTMER

. KUTMER
KUTMER
KUTMER

ESKUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER

NJKUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER
KUTMER

FUNCTION GAMMA(Z) GAMMA 1

SUBROUTINE POLYRCN,COEFF,ROOTS,OJ
C FINOS ALL ROOTS OF A POLYNOMIAL.
C (!) N IS THE DEGREE OF THE POLYNOMIAL.
C (I) CJcFF IS VECTOR OF N+l COEFFICIENTS. CONSTANT TERM
C (R) ROOTS IS ARRAY (2-DIM., 2 BY N) OF THE ROOTS. REAL

FIRST ROW, IMAGINARY PARTS IN SECOND ROM.
C (R) D IS VECTOR OF N+l RECOMPUTED COEFFICIENTS.CONSTANT

IN COEFFJN+1).
PARTS IN

IN

POLYR
POLYR
POLYR
POLYR
POLYR
POLYR

DCN+l).POLYR

SUBROUTINE TALLY«A,NOB,NV,MRA,S,TOTAL,AVG,SD,VMIN,VMAX>
COMPUTES THE TOTAL,MEAN,STANDARD DEVIATION,MIN. AND MAX.

(I)
(I)
(I)
(I)
(I)

(R)
(R)
(R)
(R)
(R)

A
NOB
NV
MRA
S

TOTAL
AVG
SD
VMIN
VMAX

FOR EACH VAR
IS THfc MATRIX

THE NUMBER
THE NUMBER
THE MAX. NO
A VECTOR OF

OBSERVATIONS
IS A VECTOR OF

A VECTOR OF
A VECTOR OF
A VECTOR OF
A VECTOR OF

IS
IS
IS
IS

IS
IS
IS
IS

IABLE IN A SET(SUBSET) OF OBSERVATIONS.
OF OBSERVATIONS,NOB ROWS BY NV COLUMNS.
OF OBSERVATIONS OF EACH VARIABLE.
OF VARIABLES.

OF ROWS OF A AS DECLARED.
LENGTH NOB SPECIFYING A SUBSET OF A. ONLY
CORRESPONDING TO NONZERO SIJ) ARE CONSIDERED
TOTALS OF EACH VARIABLE.
MEANS OF EACH VARIABLE.
STANDARD DEVIATIONS OF EACH VARIABLE.
MINIMUM SAMPLE VALUES OF EACH VARIABLE.
MAXIMUM SAMPLE VALUES OF EACH VARIABLE.

TALLY
TALLY
TALLY
TALLY
TALLY
TALLY
TALLY
TALLY
TALLY
TALLY
TALLY
TALLY
TALLY
TALLY

SUBROUTINE TTEST(A,NA,B,NB,NOP,NDF,ANS) TTEST
C COMPUTES T-STATISTIC FOR HYPOTHESIS OF EQUALITY OF POPULATION TTEST
C MEANS,GIVEN INFORMATION CONCERNING POPULATION VARIANCE. TTEST
C (I) A IS A VECTOR OF LENGTH NA CONTAINING SAMPLE DATA. TTEST
C (I) NA IS THE NUMBER OF OBSERVATIONS IN A. TTEST
C (I) B IS A VECTOR OF LENGTH NB CONTAINING SAMPLE DATA. TTEST
C (I) N6 IS THE NUMBER OF OBSERVATIONS IN B. TTEST
C (I) NOP IS THE HYPOTHESIS OPTION NUMBER. TTEST
C NOP=l. POPULATION MEAN OF B = SPECIFIED VALUE AIUSE NA=1). TTEST
C N0P=2. POPULATION MEAN OF B = POPULATION MEAN OF A,GIVEN TTEST
C VARIANCE OF B = VARIANCE OF A. TTEST
C N0P=3. POPULATION MEAN OF B = POPULATION MEAN OF A,GIVEN TTEST
C VARIANCE OF B NOT EQUAL VARIANCE OF A. TTEST
C NOP=4. POPULATION MEAN OF B = POPULATION MEAN OF A,GIVEN NO TTEST
C INFORMATION CONCERNING VARIANCEIUSE NA=NB). TTEST
C (R) NDF IS THE NUMBER OF DEGREES OF FREEDOM. TTEST
C (R) ANS IS THE T-STATISTIC. TTEST

155

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

(I)
(IS
(I)
tn

(I)
(I)

(R)
(R)
(R)

SUBROUTINE TÄ81(A.N08,MRA,S,NOVAR,UBO,FREQ,PCT,STATS) TAB1
COMPUTES FOR ONE VARIABLE IN AN OBSERVATION MATRIXCOR A TA81

MATRIX SUBSET) THE FREQUENCY AND PCT. FREQUENCY OVER CLASSTAB1
INTERVALS. FINDS THE TOTAL,MEAN,STANDARD DEVI AT ION,MIN. TAB1
AND MAX. OF THE SAMPLE. TAB1

A IS THE MATRIX OF OBSERVATIONS,NOB ROMS,ONE COLUMN PER VAR. TAB1
NOB IS THE NUMBER OF OBSERVATIONS OF THE VARIABLE. TABI
KRA IS THE MAX. NO. OF ROWS OF A AS DECLARED. TABI
S IS A VECTOR OF LENGTH NOB SPECIFYING A SUBSET OF A. ONLY TABI

ObSERVATIONS CORRESPONDING TO NONZERO SUS ARE CONSIDERED.TABI
NOVAR IS THE VARIABLE TO BE TABULATED,SPECIFIED COLUMN OF A. TABI
UBO IS A VECTOR CONTAINING THE LOWER LIMIT,NO. OF INTERVALS,AND TABI

THE UPPER LIMIT OF THE VARIABLE TO BE TABULATED IN UBO(l),TABl
UBOm.UBOO) RESPECTIVELY. NUMBER OF INTERVALS,UB0(2I, TABI
MUST INCLUDE TWO CELLS FOR VALUES UNDER ANO ABOVE LIMITS. TABI
VECTOR LENGTH IS 3. IF LOWER LIM=UPPER LIM,THE PROGRAM TABI
USES THE MIN. AND MAX. VALUES OF THE SAMPLE. TABI

FREU IS A VECTOR OF FREQUENCIES. VECTOR LENGTH IS UBOI2). TABI
PCT IS A VECTOR OF RELATIVE FREQUENCIES.VECTOR LENGTH IS UB0C2J.TAB1
STATS IS A VECTOR OF SUMMARY STATISTICS. TOTAL,MEAN,STANDARC TABI

DEVIATION,MIN. AND MAX. OF THE SAMPLE.(5 VALUES! TABI

SUBROUTINE COKRECA,NOB,NV,MRA,MRC,MRR,AVG,STD,R,C)
COMPUTES MEANS,STANDARD DEVIATIONS,SUMS OF CROSS-PRODUCTS
DEVIATIONS,AND PRODUCT-MOMENT CORRELATION COEFFICIENTS.

A IS THE MATRIX OF OBSERVATIONS,NOB ROWS BY NV COLUMNS.
NOB IS THE NUMBER OF OBSERVATIONS OF EACH VARIABLE.
NV IS THE NUMBER OF VARIABLES.
MRA IS THE MAXIMUM NUMBER OF ROWS OF A AS DECLARED.
MRC IS THE MAXIMUM NUMBER OF ROWS OF C AS DECLARED.
MRR IS THE MAXIMUM NUMBER OF ROWS OF R AS DECLARED.
AVG IS A VECTOR OF MEANS OF EACH VARIABLE.
STD IS A VECTOR OF STANDARD DEVIATIONS OF EACH VARIABLE.
R IS THE NV BY NV MATRIX OF SUMS OF CROSS-PRODUCTS OF

DEVIATIONS FROM MEANS.
(R) C IS THE NV BY NV MATRIX OF CORRELATION COEFFICIENTS.

(I)
(I)
(I)
(I)
(I)
(I)
(R)
(R)
(Rt

OF

FUNCTION EXPRN(P)
C GENERATES EXPONENTIALLY DISTRIBUTED RANDOM NUMBERS.
C USES FUNCTION URAN3KI).
C (I) P IS THE PARAMETER OF THE DISTRIBUTION.

FUNCTION IBINRN(P,N)
C GENERATES BINOMIALLY DISTRIBUTED INTEGER RANDOM NUMBERS.
C USES FUNCTION URAN3UI).
C (I) P IS THE DISTRIBUTION PARAMETER.
C (I) N IS THE DISTRIBUTION PARAMETER DENOTING MAXIMUM VALUE OF THE
C RANDOM VARIABLE.

COPRE 1
CORRE
CORRE
CORRE
CORRE
CORRE
CORRE
CCRRE
CORRE
CORRE
CORRE
CORRE
CORRE
CORRE

EXPRN 1
EXPRN
EXPRN
EXPRN

IBINRN 1
I8INRN
IBINRN
IBINRN
IBINRN
IBINRN

FUNCTION IPOSRN(FL)
C GENERATES INTEGER RANDOM NUMBERS FOLLOWING A POISSON
C DISTRIBUTION. USES FUNCTION URAN3KI).
C (I) FL IS THE PARAMETER OF THE DISTRIBUTION.

IPOSRN 1
IPOSRN
IPOSRN
IPOSRN

156

SUBROUTINE PLPRGIX*Y.NPTStSYltSY2)
C PLOTS IN 56 ROWS AND 90 COLUMNS ON A LINE PRINTER.
C USES PLPRS SUBROUTINE. (MUST INCLUDE CARDS.) USES ENCODE.(IG
C THE DATA POINTS ARE CONNECTED BY STRAIGHT LINES.
C AXES ARE PLOTTED AND THE MAX. AND MIN. VALUES OF
C X AND Y ARE PRINTED BELOW THE PLOT.
C THE TIC MARK INTERVALS IN X AND Y ARE PRINTED BELOW THE PLOT.
C THE TITLES STORED AT SY1 ANO SY2 ARE PRINTED ABOVE THE PLOT.
C A SAMPLE OF THE X,Y DATA IS PRINTED TO THE RIGHT OF THE PLOT.
C (I) X IS LINEAR ARRAY HOLDING THE X VALUES.
C (I) Y IS LINEAR ARRAY HOLDING THE Y VALUES.
Cd) NPTS IS THE NUMBER OF (X,Y) PAIRS OF VALUES.
C (I) SY1 IS A LINEAR ARRAY MOLDING FIRST TITLE.
C THE LAST CHARACTER MUST BE > .
C (I) SY2 IS A LINEAR ARRAY HOLDING SECOND TITLE.
C THE LAST CHARACTER MUST BE > .

CH

PLPRG
PLPRG

) PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG
PLPRG

SUBROUTINE PLPRS(NXB,NYB»XOR,YOR,XS»YS)
(I)
(I)
(I)
(I)
(I)
(I)

NXb
MYB
XOR
YOR
XS
YS

IS
IS
IS
IS
IS
IS

PAGE REFERENCE POINT
PAGE REFERENCE POINT
X OATA COORDINATE OF
Y DATA COORDINATE OF

IN COLUMNSt FROM The LEFT.
IN ROWS» FROM THE BOTTOM.
PAGE REFERENCE POINT.
PAGE REFERENCE POINT.

1<NXB<130
1<NYB<60

SCALE.
SCALE.

DATA
DATA

UNITS
UNITS

PER
PER

COLUMN.
ROW.

PLPRS
PLPRS
PLPRS
PLPRS
PLPRG
PLPRS

ENTRY PLPRD(MODE,NCHAR,XfY,NPTS)
C (I) MODE=0 MEANS PLOT GIVEN DATA ONLY.
C M0DE=1 MEANS PLOT GIVEN DATA POINTS CONNECTED BY STRAIGHT LINES.
C (I) NCHAR IS PRINTER CHARACTER TO BE USED.
C RIGHT ADJUSTED ALPHANUMERIC OR INTEGER EQUIVALENT.
C (II X IS LINEAR ARRAY CONTAING X VALUES TO PLOT.
C (I) Y IS LINEAR ARRAY CONTAING Y VALUES TO PLOT.
C (I) NPTS IS NUMBER OF (X,Y) PAIRS OF VALUES.

PLPRD
PLPRD
PLPRD
PLPRD
PLPRD
PLPRD
PLPRD
PLPRD

ENTRY PLPRDA(MODE»NCHAR»X,Y,NPTS,XMIN,XMAX»YMIN,YMAX) PLPRDA
C SAME AS PLPRD EXCEPT DATA POINTS OUTSIDE THE LIMITS SPECIFIED PLPRDA
C BY XMIN,XMAX,YMIN,YMAX ARE NOT PLOTTED. PLPRDA

C
C
C
C
C
c
c

ENTRY PLPRA(DX,DY»XMIN,XMAX,YMIN,YMAX,NCHAR) PLPRA
PLOT AXES INTERSECTING AT(NXBtNYB). PLPRA

) DX IS INTERVAL FOR TIC MARKS ALONG X AXIS. PLPRA
) DY IS INTERVAL FOR TIC MARKS ALONG Y AXIS. PLPRA
) XMINtXMAX ARE AXIS LIMITS IN X. PLPRA
) YMIN»YMAX ARE AXIS LIMITS IN Y. PLPRA
) NCHAR IS PRINTER CHARACTER TO BE USED. PLPRA

RIGHT ADJUSTED ALPHANUMERIC OR INTEGER EQUIVALENT. PLPRA

ENTRY PLPRT(SYM,XP»YP,NDIR)
C PRINTS TITLES.
C (I) SYM IS LINEAR ARRAY HOLDING CHARACTERS TO BE PRINTED.
C BLANK CHARACTER IS NOT IGNORED. LAST CHARACTER MUST
C (I) XP.YP ARE DATA COORDINATES OF POSITION OF FIRST CHARACTER.
C (I) NDIR=0 MEANS PRINT HORIZONTALLY.
C NDIR=1 MEANS PRINT VERTICALLY.

BE

PLPRT
PLPRT
PLPRT

>.PLPRT
PLPRT
PLPRT
PLPRT

ENTRY PLPRP
CAUSES THE ENTIRE PAGE TO BE PRINTED.

PLPRP
PLPRP

157

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

(I)
(I)
in
(I)
(I)

(I)

SUBROUTINE TAB2(A,NOB,MRA,MRB,S,NOVAR,UBO,FREOfPCT,STATlfSTAT2» TAB2
PERFORMS A TWO-MAY CLASSIFICATION FOR TWO VARIABLES IN AN TAB2

OBSERVATION MATRIXIOR A MATRIX SUBSET) OF THE FREQUENCY, TAB2
PCT. FREQUENCY,AND OTHER STATISTICS OVER GIVEN CLASS TAB2
INTERVALS. TAB2

A IS THE MATRIX OF 03SERVATIONS,NOB ROWS,ONE COLUMN PER VAR. TAB2
NOB IS THE NUMBER OF OBSERVATIONS OF THE VARIABLES. TAB2
MRA IS THE MAXIMUM NUMBER OF ROWS OF A AS DECLARED. TAB2
PRB IS THE MAXIMUM NUMBER OF ROWS OF FREQ AND PCT AS DECLARED. TAB2
S IS A VECTOR OF LENGTH NOB SPECIFYING A SUBSET OF A. ONLY TAB2

OBSERVATIONS CORRESPONDING TO NONZERO S(J) ARE CONSIDERED.TAB2
NOVAR IS THE VECTOR OF VARIABLES TO BE CROSS-TABULATED. NOVAR(l) TAB2

IS VARIABLE 1 AND NOVARI2) IS VARIABLE 2. TAB2
(I) UBO IS A 3 BY 2 MATRIX CONTAINING THE LOWER LIMIT,NO.OF TA82

INTERVALS,AND THE UPPER LIMIT OF VARIABLE I TO BE TAB2
TABULATED IN UBOt1,I),UB0(2,I),UBO(3,I) RESP. (1=1,2). TAB2
NO. OF INTERVALS,UB0(2,I),MUST INCLUDE TWO CELLS FOR TAB2
VALUES BELOW AND ABOVE LIMITS. IF LOWER LIM=UPPER LIM, TAB2
THE PROGRAM USES THE MIN. AND MAX. VALUES OF THE SAMPLE. TAB2

(R) FREQ IS THE MATRIX OF FREQUENCIES IN THE TWO-WAY CLASSIFICATION. TAB2
DIMENSION OF FREQ IS UBO(2,l) BY UBO(2,2) INTEGER VALUED. TAB2

PCT IS THE MATRIX OF PERCENT FREQUENCIES, SAME DIM. AS FREQ. TAB2
STAT1 IS THE MATRIX OF SUMMARY STATISTICS- TOTAL,MEAN,VARIANCE TAB2

FOR EACH CLASS INTERVAL OF VARIABLE 1. CLASS INTERVAL J TAB2
CORR.TO COL J. DIMENSION IS 3 BY UB0(2,1) INTEGER VALUED. TAB2

STAT2 IS THE MATRIX OF SUMMARY STATISTICS FOR VARIABLE 2. TAB2
DIMENSION IS 3 BY UBO(2,2) INTEGER VALUED. TAB2

(R)
(R)

(R)

C
i.

c
C
c
c
c
c
c
c
c
c
c
c

(I) X

(I) Y

(I) N

(I)
(I)
(R)

SUBROUTINE AVINTIX,Y,N,XLO,XUP,ANS) AVINT
APPROXIMATE INTEGRATOR OF EXPERIMENTAL DATA TABULATED AT AVINT

ARBITRARILY SPACED ABSCISSA. VALUES OF ABSCISSA ARE ASSUMED AVINT
TO BE IN NON-DECREASING ORDER. THE METHOD USED IS BASED ON AVINT
OVERLAPPING PARABOLAS. AVINT

IS THE ARRAY OF ABSCISSA AT WHICH FUNCTIONAL VALUES ARE AVINT
SUPPLIED. THESE ABSCISSA MUST BE IN NON-DECREASING ORDER, AVINT
XII) MUST BE LESS THAN OR EQUAL XJI+1) FOR 1=1,2,...,N. AVINT

IS THE ARRAY OF VALUES(ORDINATES) OF THE FUNCTION TO BE AVINT
INTEGRATED,I.E., Y(I)=F(X(D) FOR 1 = 1,2,... ,N. AVI\)T

IS THE NUMBER OF PAIRS OF VALUES (X(I),Y(I)) PROVIDED. AT AVINT
LEAST THREE X(I) MUST BE BETWEEN XLO AND XUP. AVINT

XLO IS THE LOWER LIMIT OF INTEGRATION. XLO MUST BE LESS THAN XUP. AVINT
XUP IS THE UPPER LIMIT OF INTEGRATION. AVINT
ANS IS THE VALUE OF THE INTEGRAL AS APPROXIMATED. AVINT

(I) N

C
CUR)
C
c
C
c
c
c
c
c
c

SUBROUTINE SORTXY(X,Y,N) SORTXY 1
SORT THE VECTOR X INTO NON-DECREASING ORDER. SORTXY

X,Y VECTORS OF REAL VALUES. THE ELEMENTS OF X ARE USED AS KEYS SORTXY
FOR THE SORT. THE ELEMENTS OF Y ARE MOVED SO THAT THEY SORTXY
CORRESPOND TO THE ORIGIONAL VALUES OF X. SORTXY

THE NUMBER OF ELEMENTS TO BE SORTED. SORTXY
IF THE ELEMENTS OF ANOTHER VECTOR Z ARE TO BE MOVED TO SORTXY
CORRESPOND TO THE SORTED VECTOR X THEN THE VECTOR Z SORTXY
MUST BE PASSED TO THIS SUBROUTINE EITHER AS AN ADDITIONAL SORTXY
DUMMY VARIABLE OR THRU COMMON AND THE L-TH AND I-TH SORTXY
ELEMENTS MUST BE INTERCHANGED JUST BEFORE STATEMENT 6,I.E. SORTXY
T=Z(L) $ Z(L)=2(I) $ Z«I)=T SORTXY

158

SUBROUTINE LABELAlDELX, DELY, XMIN, XMAX, YM!N, YMAX, XFAC, YFAC) LABELA
C LABELS THE AXES OF PLOTS PRODUCED WITH THE CALCOMP PLOTTER LABELA
C SUBROUTINES. LABELA
Cd) DELX, DELY ARE THE INCREMENT DISTANCES, IN DATA UNITS, ON THE LABELA
C X AND Y AXES. LABELA
C IF DELX=0, THE X AXIS WILL NOT BE LABELED. LABELA
C IF DELY=0, THE Y AXIS WILL NOT BE LABELED. LABELA
C (I) XNIN, XMAX, YMIN, YMAX ARE THE LIMITS, IN DATA UNITS, OVER LABELA
C WHICH LABELING IS TO BE DONE. LABELA
C (THE ARGUMENTS DELX, DELY, XMIN, XMAX, YMIN, AND YMAX, LABELA
C ARE USUALLY THE SAME AS THE CORRESPONDING PLTCCA ARGUMENTS LABELA
C USED IN PRODUCING THE PLOT.} LABELA
C (I) XFAC, YFAC ARE THE SCALE FACTORS FOR THE X AXIS LABELS AND LABELA
C THE Y AXIS LABELS. IF XFAC IS NOT ZERO, THE X AXIS LABEL LABELA
C AT THE POSITION WITH VALUE V WILL HAVE THE VALUE XFAC*V. LABELA
C IF XFAC=0, THE LABEL WILL HAVE THE VALUE 10**V. SIMILARLY LABELA
C FOR YFAC AND THE LABELS ON THE Y AXIS. LABELA
C (USUALLY, XFAC=YFAC=l.O» LABELA
C PLTCCE AND PLTCCS MUST BE CALLED BEFORE EITHER LABELA OR LABELS LABELA
C IS CALLED, AND PLACEMENT OF THE LABELS ON THE PAGE WILL BE LABELA
C IN REFERENCE TO THE MOST RECENT PLTCCS ENTRY. LABELA

ENTRY LABELS (SIZE, SPACE» LABELS
C CHANGES THE CONSTANTS »SIZE1 AND 'SPACE" IN THE SUBROUTINE. LABELS
C (ONLY IN DECKS DATED , OR LATER.) LABELS
C (I) SIZE IS THE HEIGHT OF THE LABELS, IN INCHES OR CM. LABELS
C (I) SPACE IS THE DISTANCE, IN INCHES OR CM., FROM YMIN TO THE TOP LABELS
C OF THE X AXIS LABELS AND FROM XMIN TO THE RIGHT SIDE OF LABELS
C THE Y AXIS LABELS. LABELS
C IF THIS ENTRY IS NOT CALLED, THE FOLLOWING WILL BE USED.... LABELS
C SIZE=0.1 INCHES (0.254 CM.), AND LABELS
C SPACE=0.1875 INCHES (0.47625 CM.) LABELS

SUBROUTINE VECTOR (XI, Yl, X2, Y2, I) VECTOR
C PLOTS A VECTOR, WITH ITS HEAD AT (X2, Y2) AND ITS TAIL VECTOR
C AT (XI, Yl), USIN THE CALCOMP PLOTTING SUBROUTINE. VECTOR
C (I) XI, Yl ARE THE X AND Y COORDINATES OF THE TAIL, IN DATA UNITS. VECTOR
C (I) X2, Y2 ARE THE X AND Y COORDINATES OF THE HEAD, IN DATA UNITS. VECTOR
C (I) 1=1 MEANS THAT TAIL MARKERS ARE PLOTTED. VECTOR
C 1=0 MEANS THAT TAIL MARKERS ARE NOT PLOTTED. VECTOR
C PLTCCB AND PLTCCS MUST BOTH BE CALLED BEFORE EITHER VECTOR VECTOR
C OR VECTOS IS CALLED, AND THE SIZE AND K'SITION OF THE VECTOR
C VECTOR WILL BE IN REFERENCE TO THE MOST DECENT PLTCCS ENTRY. VECTOR

ENTRY VECTOS (SIZE, ANGLE)
C CHANGES THE CONSTANTS «SIZE' AND 'ANGLE' IN THE
C (I) SIZE IS A CONSTANT USED TO DETERMINE THE LENGTH
C HEAD AND TAIL MARKERS.
C (I) ANGLE IS THE ANGLE, IN RADIANS, BETWEEN THE HEAD AND
C TAIL MARKERS AND THE BODY OF THE VECTOR.
C IF THIS ENTRY IS NOT CALLED, THE FOLLOWING WILL
C SIZE=0.05, AND ANGLE=0.5235988 (30.0 DEGREES)

SUBROUTINE.
OF THE

BE USED...

VECTOS
VECTOS
VECTOS
VECTOS
VECTOS
VECTOS
VECTOS
VECTOS

159

■

SUBROUTINE OASHL (PA. N. X, Y, H) OASHL
C PLOT OASHEO LINES. AS DEFINED BY THE USER, ALONG A CURVE, OASHL
C USING THE CALCOMP PLOTTING SUBROUTINE, DASHL
C (I) PA IS THE NAME OF THE LINEAR ARRAY WHICH CONTAINS THE LENGTH DASHL
C OF THE DASHES AND SPACES. IN INCHES OR CM., MAKING UP THE DASHL
C PATTERN WHICH WILL BE REPEATED UNTIL THE CURVE IS DRAWN. DASHL
C PA(I), FOX 1=1,3,5, , CORRESPOND TO THE DASHES IN THE DASHL
C PATTERN, WHILE DASHL
C PA(I), FOR 1=2,4,6, • CORRESPOND TO THE SPACES DASHL
C BETWEEN THE DASHES. DASHL
C (I) N IS THE NUMBER OF NUMBERS IN THE PATTERN DESCRIPTION. DASHL
C (I) X, Y ARE THE NAMES OF LINEAR ARRAYS WHICH CONTAIN THE DASHL
C X AND Y COORDINATES OF THE POINTS DESCRIBING THE CURVE. DASHL
C (I) M IS THE NUMBER OF POINTS IN THE CURVE DESCRIPTION. DASHL
C PLTCCB AND PLTCCS MUST BE CALLED BEFORE EITHER DASHL OR DASHL
C DASHLA IS CALLED, AND PLOTTING IS DONE WITH REFERENCE DASHL
C TO THE MOST RECENT PLTCCS ENTRY. DASHL

ENTRY DASHLA (PA, N, X, Y, M. XMIN* XMAX. YMIN. YMAX)
C(I) XMIN, XMAX. YMIN, YMAX ARE THE GRAPH LIMITS. IN DATA UNITS.
C THE DASHLA ENTRY WILL NOT PLOT OUTSIDE THESE LIMITS.
C (THE DASHL ENTRY USES THE BOARD LIMITS.)

DASHLA
DASHLA
DASHLA
DASHLA

C
C
C
C
C
C
c
C
c
C
C
C
C
c
C
c
c
C
C
c
c
c
c
c
C
C
C
c
c
C

SUBROUTINE EIGENtA.N.NM.T.EVR.EVI.VECR.VECI.INDIO E
FINOS ALL THE EIGENVALUES AND EIGENVECTORS OF A REAL E

GENERAL MATRIX OF ORDER N. THE REAL EIGENVECTOR IS E
NORMALIZED SO THAT THE SUM OF THE SQUARES OF THE E
COMPONENTS IS EQUAL TO ONE. THE COMPLEX EIGENVECTOR IS E
NORMALIZED SO THAT THE COMPONENT WITH THE LARGEST VALUE E
IN MODULUS HAS ITS REAL PART EQUAL TO ONE AND THE E
IMAGINARY PART EQUAL TO ZERO. THE ORIGINAL MATRIX A IS E
DESTROYED BY THE SUBROUTINE. E

(DA IS THE MATRIX OF ORDER N. E
(IJ N IS THE ORDER OF THE MATRIX. E
(I) NM IS THE FIRST DIMENSION OF THE MATRICES A,VECR.VECI ANC THE E

DIMENSION OF THE VECTORS EVR.EVI AND INDIC AS DECLARED. E
(I) T IS A PARAMETER EQUAL TO THE NO. OF BINARY DIGITS IN THE E

MANTISSA OF A FLOATING POINT NO., FOR BRLESC, T=53.0 E
(R) EVR IS A VECTOR CONTAINING THE REAL PARTS OF THE N COMPUTED E

EIGENVALUES. E
(R) EVI IS A VECTOR CONTAINING THE IMAGINARY PARTS OF THE N E

COMPUTED EIGENVALUES. E
(R) VECR IS A MATRIX,WHERE COLUMN I CONTAINS THE REAL COMPONENTS OF E

THE NORMALIZED EIGENVECTOR I CORRESPONDING TO THE E
EIGENVALUE STORED IN EVR(I) AND EVKI) (1 = 1,2, ... ,N) . E

(R) VECI IS A MATRIX,WHERE COLUMN I CONTAINS THE IMAGINARY COMPONENTSE
OF THE NORMALIZED EIGENVECTOR I CORRESPONDING TO THE
EIGENVALUE STORED IN EVR(I) AND EVKI) (1 = 1,2, ... ,N).

(R) INDIC IS A VECTOR INDICATING THE SUCCESS OF THE SUBROUTINE EIGEN
AS FOLLOWS

VALUE OF INDIC«I) EIGENVALUE I
0 NOT FOUND
1 FOUND
2 FOUND

EIGENVECTOR I
NOT FOUND
NOT FOUND
FOUND

IGEN 1
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN
IGEN

160

)

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE SES(X,NO,KODE,RSLT1.RSLT2,T1.T2) BES
CALCULATES THE BESSEL FUNCTIONS JIX), Y< X), I (X), OR MX) FOR BES

REAL ARGUMENTS AND INTEGER ORDERS. BES
(I) X IS THE REAL ARGUMENT OF THE BESSEL FUNCTION. THE ARGUMENT BES

MAY BE POSITIVE,ZERO, OR NEGATIVEINEG. ARG. FOR Y(X) OR BES
MX) PRODUCES ERROR MESSAGE SINCE RESULTS MAY BE COMPLEX) BES
RESTRICTION ON RANGE IS BES

FOR J(X), -660.0 .LE. X .LE. 660.0 BES
FOR Y(X)t 0.0 .LE. X .LE. 660.0 BES
FOR I(X), -350.0 .LE. X .LE. 350.0 BES
FOR MX), 0.0 .LE. X .LE. 350.0 BES

(I) NO IS THE INTEGER ORDER OF FUNCTION DESIRED FOR A SINGLE VALUE BES
TO EE RETURNED, OR THE MAXIMUM ORDER DESIRED (+ OR -) IF BES
AN ARRAY OF VALUES IS TO BE RETURNED. BES
LET XX = ABS(X). THEN BOUNDS ON ORDERS ARE BES
1. FOR 0.0 .LE. XX .LE. 50.0 BES

ABS(NO) .LE. INT(2.50*XX + 90.0) BES
2. FOR 50.0 .LT. XX .LE. 150.0 BES

ABS(NO) .LE. INT(1.67*XX + 150.0) BES
3. FOR 150.0 .LT. XX .LE. 300.0 BES

ABS(NO) .LE. INT(1.43*XX ♦ 200.0) BES
A. FOR 300.0 .LT. XX .LE. 660.0 BES

ABS(NO) .LE. INT(1.25*XX + 240.0) BES
(I) KODE IS THE INTEGER INDICATOR FOR THE PARTICULAR FUNCTION TO BE BES

COMPUTED. BES
KODE = 10 --FUNCTION J(X) ONLY BES

= 11 — Y(X) ONLY BES
= 12 — J(X) AND Y(X) BES
= 20 -- I(X) ONLY BES
= 21 ~ MX) ONLY BES
= 22 — I(X) AND MX) BES

(R) RSLT1 IS THE REAL FUNCTION VALUE FOR J(X) OR I(X) CORRESPONDING BES
TO THE ORDER AND ARGUMENT SUPPLIED, DEPENDING ON THE KODE BES
VALUE. THIS PAkAMETER WOULD CONTAIN THE RESULT IF ONLY BES
ONE FUNCTION VALUE IS TO BE RETURNED. EES

(R) RSLT2 CONTAINS THE REAL FUNCTION VALUE FOR Y(X) OR MX) IN A BES
MANNER SIMILAR TO RSLT1. BES

IR) Tl IS A WORK AREA WHICH WILL CONTAIN THE ARRAY OF REAL FUNCT- BES
ION VALUES FOR J(X) OR I(X) OF ORDERS ZERO THROUGH NO, BES
DEPENDING ON KODE. Tl MUST BE DIMENSIONED IN THE CALLING BES
PROGRAM AND MUST CONTAIN AT LEAST M CELLS OF STORAGE, BES
WHERE BES

M = MAXUBS<N0),INT<2*ABS(X))> + 51 BES
IN USING THE ARRAY, TIC» = FUNCTION OF ORDER 0,..., BES
TKNO+1) = FUNCTION OF OROER NO. BES

(R) T2 IS SIMILAR TO Tl FOR THE FUNCTIONS Y(X) OR MX). AN EXCEPT- BES
ION IS THAT IF ONLY J(X) OR I(X) ARE CALLED, THEN T2 BES
NEEDS NO DIMENSION IN THE CALLING PROGRAM, BUT THE PARAM- BES
ETER MUST STILL APPEAR IN THE CALLING SECUENCE. OTHERWISE BES
T2 MUST BE DIMENSIONED AT LEAST M. BES

161

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification ol title, body oi abstract and indexing annotation must be entered when the overall report j.s clnsstlied)

I ORIGINATING ACTix/I^Y (Corporate author;

U.S. Army Aberdeen Research and Development Center
Aberdeen Proving Ground, Maryland

2.3 REPORT SECURITY CLASSIFICATION

Unclassified
2b GROUP

3 REPORT TITLE

BRLESC I/II FORTRAN

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

S AUTHORfSJ (Last name, lint name, initial)

Campbell, Lloyd W. and Beck, Glenn A.

S REPORT DATE

March 1970

7a TOTAL NO. OF PAGES

163
7b NO OF REFS

8a. CONTRACT OR GRANT NO.

b. PROJECT NO

Funded by all ARDC RDTSE Projects

9a. ORIGINATOR'S REPORT NUMBERfSj

ARDC Technical Report No. 5

9b. OTHER REPORT NOfS) (A ny other numbers that may be assigned
this report)

10. A V A IL ABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its
distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

U.S. Army Materiel Command
Washington, D.C.

13. ABS.RACT

FORTRAN is a popular scientific programming language that has been implemented
on many computers. This report describes the FORTRAN language in general and
includes specific details about its implementation on the BRLESC I and BRLESC II
computers at the Aberdeen Research and Development Center.

DD .ÜSW. 1473 Unclassified

Security Classification

Unclassified
S?curi!v Classification

KEY WORDS

FORTRAN
Programming Language
Digital Computer
BRLESC I Computer
BRLESC II Computer
Compiler

LINK A LINK B

ROLE W T

LINK C

ROLE WT

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECUHTY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Ma.-king is to be in accord-
ance with appropriate security regui: tions.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital lette/s. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of authors) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.
6. REPORT DATE Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination rrocedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those
imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department ^(Commerce, for sale to the public, indi-
cate this fact and enter the price, if ki '.wn.
11. SUPPLEMENTARY NOTES: Use/or additional explana-
tory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet
shall be attached.

It is highly desirable that the abstract of classified re-
ports be unclassified. Each paragraph of the abstract shall
end with an indication of the military security classification
of the information in the paragraph, represented as (TS), (S),
(C), or (V),

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Iden-
fiers, such as equipment model designation, trade name, mili-
tary project code name, Geographie location, may be used as
key words but will be followed by an indication of technical
context. The assignment of links, rules, and weights is
optional.

Unclassified
Security Clä¥sificatiorT

